Skip to main content
Log in

A novel multiscale simulation framework for low-dimensional memristors

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In recent years, the memristor has been widely considered an emerging device, but it has rarely been simulated. An obstacle is the change in the intrinsic atomic level when it works. Using the density functional theory (DFT), this atomic level change in structure cannot be demonstrated. Using molecular dynamics (MD), memristor electronic transport properties cannot be calculated. In this study, we propose a novel multiscale simulation framework merging MD, DFT, and the nonequilibrium Green’s function method, which can reveal not only a memristor’s basic working mechanism but also its transport character. To verify our framework’s availability in guiding innovative memristor design, a new type of memristor, a planar monolayer MoS2-based memristor, is simulated for the first time. The popped S atoms’ effect on its carrier transport is revealed, which clarifies the working mechanism of the planar monolayer MoS2-based memory device. We hope that this framework can shed light on the analysis and design of low-dimensional memristors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. Torrezan, J. P. Strachan, G. Medeiros-Ribeiro, and R. S. Williams, Nanotechnology 22, 485203 (2011).

    Article  Google Scholar 

  2. Y. R. Jeon, Y. Abbas, A. S. Sokolov, S. Kim, B. Ku, and C. Choi, ACS Appl. Mater. Interfaces 11, 23329 (2019).

    Article  Google Scholar 

  3. M. J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y. B. Kim, C. J. Kim, D. H. Seo, S. Seo, U. I. Chung, I. K. Yoo, and K. Kim, Nat. Mater. 10, 625 (2011).

    Article  ADS  Google Scholar 

  4. Y. Abbas, R. B. Ambade, S. B. Ambade, T. H. Han, and C. Choi, Nanoscale 11, 13815 (2019).

    Article  Google Scholar 

  5. V. Milo, C. Zambelli, P. Olivo, E. Pérez, M. K. Mahadevaiah, O. G. Ossorio, C. Wenger, and D. Ielmini, APL Mater. 7, 081120 (2019).

    Article  ADS  Google Scholar 

  6. B. Ku, B. Koo, A. S. Sokolov, M. J. Ko, and C. Choi, J. Alloys Compd. 833, 155064 (2020).

    Article  Google Scholar 

  7. R. Zhu, S. Chang, H. Wang, Q. Huang, J. He, and F. Yi, IEEE Electron Device Lett. 38, 1367 (2017).

    Article  ADS  Google Scholar 

  8. R. Zhu, S. Ye, Z. Tang, P. Lin, Q. Huang, H. Wang, J. He, and S. Chang, IEEE Access 7, 47472 (2019).

    Article  Google Scholar 

  9. R. Zhu, Z. Tang, S. Ye, Q. Huang, L. Guo, and S. Chang, IEEE Trans. Electron Devices 68, 602 (2021).

    Article  ADS  Google Scholar 

  10. A. S. Sokolov, H. Abbas, Y. Abbas, and C. Choi, J. Semicond. 42, 013101 (2021).

    Article  Google Scholar 

  11. S. Pan, Q. Huang, H. Wang, J. He, and S. Chang, Microelectron. Eng. 251, 111668 (2022).

    Article  Google Scholar 

  12. J. Lee, C. Du, K. Sun, E. Kioupakis, and W. D. Lu, ACS Nano 10, 3571 (2016).

    Article  Google Scholar 

  13. A. Abnavi, R. Ahmadi, A. Hasani, M. Fawzy, M. R. Mohammadzadeh, T. De Silva, N. Yu, and M. M. Adachi, ACS Appl. Mater. Interfaces 13, 45843 (2021).

    Article  Google Scholar 

  14. U. Das, S. Bhattacharjee, B. Mahato, M. Prajapat, P. Sarkar, and A. Roy, Mater. Sci. Semicond. Process. 107, 104837 (2020).

    Article  Google Scholar 

  15. Y. Yang, H. Du, Q. Xue, X. Wei, Z. Yang, C. Xu, D. Lin, W. Jie, and J. Hao, Nano Energy 57, 566 (2019).

    Article  Google Scholar 

  16. S. Mitra, A. Kabiraj, and S. Mahapatra, npj 2D Mater. Appl. 5, 33 (2021).

    Article  Google Scholar 

  17. N. Onofrio, D. Guzman, and A. Strachan, Nat. Mater. 14, 440 (2015).

    Article  ADS  Google Scholar 

  18. Y. L. Chen, B. Balraj, P. F. Chung, C. Sivakumar, W. J. Lee, and M. S. Ho, Appl. Phys. Lett. 118, 083502 (2021).

    Article  ADS  Google Scholar 

  19. L. Li, W. Li, C. Zhu, and L. F. Mao, Eur. Phys. J. B 91, 92 (2018).

    Article  ADS  Google Scholar 

  20. L. Li, W. Li, C. Zhu, and L. F. Mao, Phys. Status Solidi B 257, 1900455 (2020).

    Article  ADS  Google Scholar 

  21. K. H. Xue, Y. Li, H. L. Su, J. H. Yuan, Y. Li, Z. R. Wang, B. Zhang, and X. S. Miao, J. Appl. Phys. 124, 152125 (2018).

    Article  ADS  Google Scholar 

  22. E. A. Khera, H. Ullah, F. Hussain, M. Imran, R. M. A. Khalil, M. A. Sattar, A. M. Rana, C. Mahata, and S. Kim, Physica E 119, 114025 (2020).

    Article  Google Scholar 

  23. B. Xiao, X. Yu, and J. Cheng, ACS Appl. Mater. Interfaces 8, 31978 (2016).

    Article  Google Scholar 

  24. J. Liang, Q. Cui, and H. Yang, Phys. Rev. B 102, 220409 (2020).

    Article  ADS  Google Scholar 

  25. H. Yang, J. Liang, and Q. Cui, Nat. Rev. Phys. 5, 43 (2023).

    Article  Google Scholar 

  26. D. Yu, Y. Ga, J. Liang, C. Jia, and H. Yang, Phys. Rev. Lett. 130, 056701 (2023).

    Article  ADS  Google Scholar 

  27. H. Yildirim, and R. Pachter, ACS Appl. Electron. Mater. 1, 467 (2019).

    Article  Google Scholar 

  28. F. Ducry, J. Aeschlimann, and M. Luisier, Nanoscale Adv. 2, 2648 (2020).

    Article  ADS  Google Scholar 

  29. J. Akola, K. Konstantinou, and R. O. Jones, Phys. Rev. Mater. 6, 035001 (2022).

    Article  Google Scholar 

  30. T. Hynninen, T. Musso, and A. S. Foster, Model. Simul. Mater. Sci. Eng. 24, 035022 (2016).

    Article  ADS  Google Scholar 

  31. E. V. Sukhanova, D. G. Kvashnin, and Z. I. Popov, Nanoscale 12, 23248 (2020).

    Article  Google Scholar 

  32. A. Ostadhossein, A. Rahnamoun, Y. Wang, P. Zhao, S. Zhang, V. H. Crespi, and A. C. T. van Duin, J. Phys. Chem. Lett. 8, 631 (2017).

    Article  Google Scholar 

  33. X. Wu, R. Ge, P. A. Chen, H. Chou, Z. Zhang, Y. Zhang, S. Banerjee, M. H. Chiang, J. C. Lee, and D. Akinwande, Adv. Mater. 31, 1806790 (2019).

    Article  Google Scholar 

  34. M. Qiu, S. Ye, W. Wang, J. He, S. Chang, H. Wang, and Q. Huang, Superlatt. Microstruct. 133, 106199 (2019).

    Article  Google Scholar 

  35. M. Liu, J. Shi, Y. Li, X. Zhou, D. Ma, Y. Qi, Y. Zhang, and Z. Liu, Small 13, 1602967 (2017).

    Article  Google Scholar 

  36. D. Li, B. Wu, X. Zhu, J. Wang, B. Ryu, W. D. Lu, W. Lu, and X. Liang, ACS Nano 12, 9240 (2018).

    Article  Google Scholar 

  37. V. K. Sangwan, D. Jariwala, I. S. Kim, K. S. Chen, T. J. Marks, L. J. Lauhon, and M. C. Hersam, Nat. Nanotech. 10, 403 (2015), arXiv: 1504.01416.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Wang or Sheng Chang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 62074116, 61874079, and 81971702) and the Luojia Young Scholars Program. The numerical calculations in this paper have been performed on the supercomputing system in the Supercomputing Center of Wuhan University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, S., Liu, L., Huang, Q. et al. A novel multiscale simulation framework for low-dimensional memristors. Sci. China Phys. Mech. Astron. 66, 276811 (2023). https://doi.org/10.1007/s11433-022-2082-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-2082-7

Navigation