Skip to main content
Log in

2D materials for intelligent devices

  • Invited Review
  • Special Topic: Quantum Materials and Intelligent Devices
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Neuromorphic intelligent hardware technologies have undergone rapid advancement during the past decade, with the goal of building intelligent devices and systems capable of overcoming challenges associated with conventional hardware. Realization of neuromorphic intelligent hardware depends on major advances in materials science, condensed matter physics, device physics and engineering. As a revolutionary discovery, two-dimensional (2D) materials with atomically-thin thickness and exceptionally high tunability introduce a new physical paradigm and show great promise in the development of intelligent devices. Here, we give prominence to three categories of tunable properties (i.e., charge carrier, band structure, lattice structure) that are inherent for 2D materials and review their superiorities in constructing intelligent devices particularly in electronics and optoelectronics. Furthermore, we provide insight into how the unique physical mechanisms emerging in 2D materials offer a fertile ground for the design of diverse intelligence devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Du, Z. C. Wang, and G. Z. Zhao, Front. Phys. 17, 23602 (2022).

    Article  ADS  Google Scholar 

  2. D. H. Kim, Z. Liu, Y. S. Kim, J. Wu, J. Song, H. S. Kim, Y. Huang, K. Hwang, Y. Zhang, and J. A. Rogers, Small 5, 2841 (2009).

    Article  Google Scholar 

  3. F. Faggin, Nat. Electron. 1, 88 (2018).

    Article  Google Scholar 

  4. P. Dong, Y. K. Chen, G. H. Duan, and D. T. Neilson, Nanophotonics 3, 215 (2014).

    Article  Google Scholar 

  5. D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, and J. A. Rogers, Science 320, 507 (2008).

    Article  ADS  Google Scholar 

  6. W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. van Campenhout, P. Bienstman, D. van Thourhout, R. Baets, V. Wiaux, and S. Beckx, Opt. Express 12, 1583 (2004).

    Article  ADS  Google Scholar 

  7. S. Wang, X. Liu, and P. Zhou, Adv. Mater. 34, 2270332 (2022).

    Article  Google Scholar 

  8. Q. Ma, G. Ren, K. Xu, and J. Z. Ou, Adv. Opt. Mater. 9, 2001313 (2021).

    Article  Google Scholar 

  9. C. Liu, H. Chen, S. Wang, Q. Liu, Y. G. Jiang, D. W. Zhang, M. Liu, and P. Zhou, Nat. Nanotech. 15, 545 (2020).

    Article  ADS  Google Scholar 

  10. M. C. Lemme, D. Akinwande, C. Huyghebaert, and C. Stampfer, Nat. Commun. 13, 1392 (2022).

    Article  ADS  Google Scholar 

  11. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat. Nanotech. 7, 699 (2012).

    Article  ADS  Google Scholar 

  12. V. K. Sangwan, and M. C. Hersam, Nat. Nanotech. 15, 517 (2020).

    Article  ADS  Google Scholar 

  13. M. Gibertini, M. Koperski, A. F. Morpurgo, and K. S. Novoselov, Nat. Nanotech. 14, 408 (2019).

    Article  ADS  Google Scholar 

  14. Y. S. Shin, K. Lee, Y. R. Kim, H. Lee, I. M. Lee, W. T. Kang, B. H. Lee, K. Kim, J. Heo, S. Park, Y. H. Lee, and W. J. Yu, Adv. Mater. 30, 1704435 (2018).

    Article  Google Scholar 

  15. L. Sun, Y. Zhang, G. Han, G. Hwang, J. Jiang, B. Joo, K. Watanabe, T. Taniguchi, Y. M. Kim, W. J. Yu, B. S. Kong, R. Zhao, and H. Yang, Nat. Commun. 10, 3161 (2019).

    Article  ADS  Google Scholar 

  16. A. K. Geim, and I. V. Grigorieva, Nature 499, 419 (2013).

    Article  Google Scholar 

  17. Y. Liu, N. O. Weiss, X. Duan, H. C. Cheng, Y. Huang, and X. Duan, Nat. Rev. Mater. 1, 16042 (2016).

    Article  ADS  Google Scholar 

  18. S. Bertolazzi, D. Krasnozhon, and A. Kis, ACS Nano 7, 3246 (2013).

    Article  Google Scholar 

  19. S. K. Behura, C. Wang, Y. Wen, and V. Berry, Nat. Photon. 13, 312 (2019).

    Article  ADS  Google Scholar 

  20. L. Yu, Y. H. Lee, X. Ling, E. J. G. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, Nano Lett. 14, 3055 (2014).

    Article  ADS  Google Scholar 

  21. A. Chaves, J. G. Azadani, H. Alsalman, D. R. da Costa, R. Frisenda, A. J. Chaves, S. H. Song, Y. D. Kim, D. He, J. Zhou, A. Castellanos-Gomez, F. M. Peeters, Z. Liu, C. L. Hinkle, S. H. Oh, P. D. Ye, S. J. Koester, Y. H. Lee, P. Avouris, X. Wang, and T. Low, npj 2D Mater. Appl. 4, 29 (2020).

    Article  Google Scholar 

  22. L. Pi, P. Wang, S. J. Liang, P. Luo, H. Wang, D. Li, Z. Li, P. Chen, X. Zhou, F. Miao, and T. Zhai, Nat. Electron. 5, 248 (2022).

    Article  Google Scholar 

  23. C. Ma, S. Yuan, P. Cheung, K. Watanabe, T. Taniguchi, F. Zhang, and F. Xia, Nature 604, 266 (2022).

    Article  ADS  Google Scholar 

  24. Z. Dai, L. Liu, and Z. Zhang, Adv. Mater. 31, 1805417 (2019).

    Article  Google Scholar 

  25. G. Lee, S. J. Pearton, F. Ren, and J. Kim, Adv. Electron. Mater. 5, 1800745 (2019).

    Article  Google Scholar 

  26. H. Hu, W. Y. Tong, Y. H. Shen, and C. G. Duan, J. Mater. Chem. C 8, 8098 (2020).

    Article  Google Scholar 

  27. C. Gong, E. M. Kim, Y. Wang, G. Lee, and X. Zhang, Nat. Commun. 10, 2657 (2019).

    Article  ADS  Google Scholar 

  28. K. S. Burch, D. Mandrus, and J. G. Park, Nature 563, 47 (2018).

    Article  ADS  Google Scholar 

  29. H. Yang, S. O. Valenzuela, M. Chshiev, S. Couet, B. Dieny, B. Dlubak, A. Fert, K. Garello, M. Jamet, D. E. Jeong, K. Lee, T. Lee, M. B. Martin, G. S. Kar, P. Sénéor, H. J. Shin, and S. Roche, Nature 606, 663 (2022).

    Article  ADS  Google Scholar 

  30. C. Gong, and X. Zhang, Science 363, eaav4450 (2019).

    Article  Google Scholar 

  31. C. N. Lau, F. Xia, L. Cao, C. N. Lau, F. Xia, and L. Cao, MRS Bull. 45, 340 (2020).

    Article  ADS  Google Scholar 

  32. A. Ciarrocchi, F. Tagarelli, A. Avsar, and A. Kis, Nat. Rev. Mater. 7, 449 (2022).

    Article  ADS  Google Scholar 

  33. Z. Liu, L. Deng, and B. Peng, Nano Res. 14, 1802 (2020).

    Article  Google Scholar 

  34. G. Iannaccone, F. Bonaccorso, L. Colombo, and G. Fiori, Nat. Nanotech. 13, 183 (2018).

    Article  ADS  Google Scholar 

  35. A. Klein, Thin Solid Films 520, 3721 (2012).

    Article  ADS  Google Scholar 

  36. S. Wang, X. Pan, L. Lyu, C. Y. Wang, P. Wang, C. Pan, Y. Yang, C. Wang, J. Shi, B. Cheng, W. Yu, S. J. Liang, and F. Miao, ACS Nano 16, 4528 (2022).

    Article  Google Scholar 

  37. C. Y. Wang, S. J. Liang, P. Wang, Z. A. Li, Z. Wang, A. Gao, C. Pan, C. Liu, J. Liu, H. Yang, X. Liu, W. Song, C. Wang, B. Cheng, X. Wang, K. Chen, Z. Wang, K. Watanabe, T. Taniguchi, J. J. Yang, and F. Miao, Sci. Adv. 6, eaba6173 (2020).

    Article  ADS  Google Scholar 

  38. A. Pospischil, M. M. Furchi, and T. Mueller, Nat. Nanotech. 9, 257 (2014).

    Article  ADS  Google Scholar 

  39. S. Das, D. Pandey, J. Thomas, and T. Roy, Adv. Mater. 31, 1802722 (2019).

    Article  Google Scholar 

  40. B. W. H. Baugher, H. O. H. Churchill, Y. Yang, and P. Jarillo-Herrero, Nat. Nanotech. 9, 262 (2014).

    Article  ADS  Google Scholar 

  41. R. Frisenda, A. J. Molina-Mendoza, T. Mueller, A. Castellanos-Gomez, and H. S. J. van der Zant, Chem. Soc. Rev. 47, 3339 (2018).

    Article  Google Scholar 

  42. J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, Nat. Nanotech. 9, 268 (2014).

    Article  ADS  Google Scholar 

  43. F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, and K. S. Novoselov, Nat. Mater. 14, 301 (2015).

    Article  ADS  Google Scholar 

  44. L. Mennel, J. Symonowicz, S. Wachter, D. K. Polyushkin, A. J. Molina-Mendoza, and T. Mueller, Nature 579, 62 (2020).

    Article  ADS  Google Scholar 

  45. H. Lim, S. I. Yoon, G. Kim, A. R. Jang, and H. S. Shin, Chem. Mater. 26, 4891 (2014).

    Article  Google Scholar 

  46. Z. Zhang, S. Wang, C. Liu, R. Xie, W. Hu, and P. Zhou, Nat. Nanotech. 17, 27 (2022).

    Article  ADS  Google Scholar 

  47. S. Wang, C. Y. Wang, P. Wang, C. Wang, Z. A. Li, C. Pan, Y. Dai, A. Gao, C. Liu, J. Liu, H. Yang, X. Liu, B. Cheng, K. Chen, Z. Wang, K. Watanabe, T. Taniguchi, S. J. Liang, and F. Miao, Natl. Sci. Rev. 8, nwaa172 (2020).

    Article  Google Scholar 

  48. H. Jang, C. Liu, H. Hinton, M. H. Lee, H. Kim, M. Seol, H. J. Shin, S. Park, and D. Ham, Adv. Mater. 32, e2002431 (2020).

    Article  Google Scholar 

  49. F. Liao, Z. Zhou, B. J. Kim, J. Chen, J. Wang, T. Wan, Y. Zhou, A. T. Hoang, C. Wang, J. Kang, J. H. Ahn, and Y. Chai, Nat. Electron. 5, 84 (2022).

    Article  Google Scholar 

  50. C. Pan, C. Y. Wang, S. J. Liang, Y. Wang, T. Cao, P. Wang, C. Wang, S. Wang, B. Cheng, A. Gao, E. Liu, K. Watanabe, T. Taniguchi, and F. Miao, Nat. Electron. 3, 383 (2020).

    Article  Google Scholar 

  51. L. Tong, Z. Peng, R. Lin, Z. Li, Y. Wang, X. Huang, K. H. Xue, H. Xu, F. Liu, H. Xia, P. Wang, M. Xu, W. Xiong, W. Hu, J. Xu, X. Zhang, L. Ye, and X. Miao, Science 373, 1353 (2021).

    Article  ADS  Google Scholar 

  52. H. Kroemer, Rev. Mod. Phys. 73, 783 (2001).

    Article  ADS  Google Scholar 

  53. Z. I. Alferov, Rev. Mod. Phys. 73, 767 (2001).

    Article  ADS  Google Scholar 

  54. P. Törmä, S. Peotta, and A. Bernevig, Nat. Rev. Phys. 4, 528 (2022).

    Article  Google Scholar 

  55. V. Fock, and D. Iwanenko, Nature 123, 838 (1929).

    Article  ADS  Google Scholar 

  56. K. Kim, and D. J. Siegel, J. Mater. Chem. A 7, 3216 (2019).

    Article  Google Scholar 

  57. J. Cao, S. X. Tao, P. A. Bobbert, C. P. Wong, and N. Zhao, Adv. Mater. 30, e1707350 (2018).

    Article  Google Scholar 

  58. M. Wang, S. Cai, C. Pan, C. Wang, X. Lian, Y. Zhuo, K. Xu, T. Cao, X. Pan, B. Wang, S. J. Liang, J. J. Yang, P. Wang, and F. Miao, Nat. Electron. 1, 130 (2018).

    Article  Google Scholar 

  59. V. K. Sangwan, D. Jariwala, I. S. Kim, K. S. Chen, T. J. Marks, L. J. Lauhon, and M. C. Hersam, Nat. Nanotech. 10, 403 (2015).

    Article  ADS  Google Scholar 

  60. H. Yang, S. W. Kim, M. Chhowalla, and Y. H. Lee, Nat. Phys. 13, 931 (2017).

    Article  Google Scholar 

  61. M. D. Hollingsworth, Science 295, 2410 (2002).

    Article  ADS  Google Scholar 

  62. W. Ding, J. Zhu, Z. Wang, Y. Gao, D. Xiao, Y. Gu, Z. Zhang, and W. Zhu, Nat. Commun. 8, 14956 (2017).

    Article  ADS  Google Scholar 

  63. F. Zhang, H. Zhang, S. Krylyuk, C. A. Milligan, Y. Zhu, D. Y. Zemlyanov, L. A. Bendersky, B. P. Burton, A. V. Davydov, and J. Appenzeller, Nat. Mater. 18, 55 (2019).

    Article  ADS  Google Scholar 

  64. X. Zhu, D. Li, X. Liang, and W. D. Lu, Nat. Mater. 18, 141 (2019).

    Article  Google Scholar 

  65. S. Wan, Y. Li, W. Li, X. Mao, C. Wang, C. Chen, J. Dong, A. Nie, J. Xiang, Z. Liu, W. Zhu, and H. Zeng, Adv. Funct. Mater. 29, 1808606 (2019).

    Article  Google Scholar 

  66. S. Wang, L. Liu, L. Gan, H. Chen, X. Hou, Y. Ding, S. Ma, D. W. Zhang, and P. Zhou, Nat. Commun. 12, 53 (2021).

    Article  ADS  Google Scholar 

  67. F. Xue, C. Zhang, Y. Ma, Y. Wen, X. He, B. Yu, and X. Zhang, Adv. Mater. 34, e2201880 (2022).

    Article  Google Scholar 

  68. C. Ge, C. Wang, K. Jin, H. Lu, and G. Yang, Nano-Micro Lett. 5, 81 (2013).

    Article  Google Scholar 

  69. M. Liu, T. Liao, Z. Sun, Y. Gu, and L. Kou, Phys. Chem. Chem. Phys. 23, 21376 (2021).

    Article  Google Scholar 

  70. P. W. M. Blom, R. M. Wolf, J. F. M. Cillessen, and M. P. C. M. Krijn, Phys. Rev. Lett. 73, 2107 (1994).

    Article  ADS  Google Scholar 

  71. X. Wang, P. Wang, J. Wang, W. Hu, X. Zhou, N. Guo, H. Huang, S. Sun, H. Shen, T. Lin, M. Tang, L. Liao, A. Jiang, J. Sun, X. Meng, X. Chen, W. Lu, and J. Chu, Adv. Mater. 27, 6575 (2015).

    Article  Google Scholar 

  72. H. J. Jin, C. Park, K. J. Lee, G. H. Shin, and S. Choi, Adv Mater. Technol. 6, 2100494 (2021).

    Article  Google Scholar 

  73. P. Hou, Y. Lv, X. Zhong, and J. Wang, ACS Appl. Nano Mater. 2, 4443 (2019).

    Article  Google Scholar 

  74. V. K. Sangwan, H. S. Lee, H. Bergeron, I. Balla, M. E. Beck, K. S. Chen, and M. C. Hersam, Nature 554, 500 (2018).

    Article  ADS  Google Scholar 

  75. R. Ge, X. Wu, M. Kim, J. Shi, S. Sonde, L. Tao, Y. Zhang, J. C. Lee, and D. Akinwande, Nano Lett. 18, 434 (2018).

    Article  ADS  Google Scholar 

  76. R. Ge, X. Wu, L. Liang, S. M. Hus, Y. Gu, E. Okogbue, H. Chou, J. Shi, Y. Zhang, S. K. Banerjee, Y. Jung, J. C. Lee, and D. Akinwande, Adv. Mater. 33, e2007792 (2021).

    Article  Google Scholar 

  77. Y. Li, M. Gong, and H. Zeng, J. Semicond. 40, 061002 (2019).

    Article  ADS  Google Scholar 

  78. F. Xue, X. He, J. R. D. Retamal, A. Han, J. Zhang, Z. Liu, J. K. Huang, W. Hu, V. Tung, J. H. He, L. J. Li, and X. Zhang, Adv. Mater. 31, e1901300 (2019).

    Article  Google Scholar 

  79. International Roadmap for Devices and Systems (IRDS™) 2021 Edition. IEEE, 2021.

  80. A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S. Wang, K. G. West, J. G. Ramirez, and I. K. Schuller, Phys. Rev. Lett. 110, 056601 (2013).

    Article  ADS  Google Scholar 

  81. J. del Valle, P. Salev, F. Tesler, N. M. Vargas, Y. Kalcheim, P. Wang, J. Trastoy, M. H. Lee, G. Kassabian, J. G. Ramirez, M. J. Rozenberg, and I. K. Schuller, Nature 569, 388 (2019).

    Article  ADS  Google Scholar 

  82. T. Li, S. Jiang, L. Li, Y. Zhang, K. Kang, J. Zhu, K. Watanabe, T. Taniguchi, D. Chowdhury, L. Fu, J. Shan, and K. F. Mak, Nature 597, 350 (2021).

    Article  ADS  Google Scholar 

  83. A. Ghiotto, E. M. Shih, G. S. S. G. Pereira, D. A. Rhodes, B. Kim, J. Zang, A. J. Millis, K. Watanabe, T. Taniguchi, J. C. Hone, L. Wang, C. R. Dean, and A. N. Pasupathy, Nature 597, 345 (2021).

    Article  ADS  Google Scholar 

  84. X. Zhang, Y. Zhuo, Q. Luo, Z. Wu, R. Midya, Z. Wang, W. Song, R. Wang, N. K. Upadhyay, Y. Fang, F. Kiani, M. Rao, Y. Yang, Q. Xia, Q. Liu, M. Liu, and J. J. Yang, Nat. Commun. 11, 51 (2020).

    Article  ADS  Google Scholar 

  85. M. D. Pickett, G. Medeiros-Ribeiro, and R. S. Williams, Nat. Mater. 12, 114 (2013).

    Article  ADS  Google Scholar 

  86. Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Nature 556, 43 (2018).

    Article  ADS  Google Scholar 

  87. J. M. Park, Y. Cao, K. Watanabe, T. Taniguchi, and P. Jarillo-Herrero, Nature 590, 249 (2021).

    Article  ADS  Google Scholar 

  88. J. X. Lin, P. Siriviboon, H. D. Scammell, S. Liu, D. Rhodes, K. Watanabe, T. Taniguchi, J. Hone, M. S. Scheurer, and J. I. A. Li, Nat. Phys. 18, 1221 (2022).

    Article  Google Scholar 

  89. H. Wu, Y. Wang, Y. Xu, P. K. Sivakumar, C. Pasco, U. Filippozzi, S. S. P. Parkin, Y. J. Zeng, T. McQueen, and M. N. Ali, Nature 604, 653 (2022).

    Article  ADS  Google Scholar 

  90. D. R. Klein, L. Q. Xia, D. MacNeill, K. Watanabe, T. Taniguchi, and P. Jarillo-Herrero, Nat. Nanotech. 18, 331 (2023).

    Article  ADS  Google Scholar 

  91. Y. Deng, Y. Yu, M. Z. Shi, Z. Guo, Z. Xu, J. Wang, X. H. Chen, and Y. Zhang, Science 367, 895 (2020).

    Article  ADS  Google Scholar 

  92. M. Serlin, C. L. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu, K. Watanabe, T. Taniguchi, L. Balents, and A. F. Young, Science 367, 900 (2020).

    Article  ADS  Google Scholar 

  93. Q. Ma, S. Y. Xu, H. Shen, D. MacNeill, V. Fatemi, T. R. Chang, A. M. Mier Valdivia, S. Wu, Z. Du, C. H. Hsu, S. Fang, Q. D. Gibson, K. Watanabe, T. Taniguchi, R. J. Cava, E. Kaxiras, H. Z. Lu, H. Lin, L. Fu, N. Gedik, and P. Jarillo-Herrero, Nature 565, 337 (2019).

    Article  ADS  Google Scholar 

  94. J. Xiao, Y. Wang, H. Wang, C. D. Pemmaraju, S. Wang, P. Muscher, E. J. Sie, C. M. Nyby, T. P. Devereaux, X. Qian, X. Zhang, and A. M. Lindenberg, Nat. Phys. 16, 1028 (2020).

    Article  Google Scholar 

  95. J. Ma, Q. Gu, Y. Liu, J. Lai, P. Yu, X. Zhuo, Z. Liu, J. H. Chen, J. Feng, and D. Sun, Nat. Mater. 18, 476 (2019).

    Article  ADS  Google Scholar 

  96. D. Afanasiev, J. R. Hortensius, M. Matthiesen, S. Mañas-Valero, M. Šiškins, M. Lee, E. Lesne, H. S. J. van der Zant, P. G. Steeneken, B. A. Ivanov, E. Coronado, and A. D. Caviglia, Sci. Adv. 7, eabf3096 (2021).

    Article  ADS  Google Scholar 

  97. X. Wang, C. Xiao, H. Park, J. Zhu, C. Wang, T. Taniguchi, K. Watanabe, J. Yan, D. Xiao, D. R. Gamelin, W. Yao, and X. Xu, Nature 604, 468 (2022).

    Article  ADS  Google Scholar 

  98. H. Bian, X. Qin, Y. Wu, Z. Yi, S. Liu, Y. Wang, C. D. S. Brites, L. D. Carlos, and X. Liu, Adv. Mater. 34, 2101895 (2022).

    Article  Google Scholar 

  99. Y. Zhu, C. Wu, Z. Xu, Y. Liu, H. Hu, T. Guo, T. W. Kim, Y. Chai, and F. Li, Nano Lett. 21, 6087 (2021).

    Article  ADS  Google Scholar 

  100. X. Wang, K. Yasuda, Y. Zhang, S. Liu, K. Watanabe, T. Taniguchi, J. Hone, L. Fu, and P. Jarillo-Herrero, Nat. Nanotech. 17, 367 (2022).

    Article  ADS  Google Scholar 

  101. K. Yasuda, X. Wang, K. Watanabe, T. Taniguchi, and P. Jarillo-Herrero, Science 372, 1458 (2021).

    Article  ADS  Google Scholar 

  102. Z. Zheng, Q. Ma, Z. Bi, S. de la Barrera, M. H. Liu, N. Mao, Y. Zhang, N. Kiper, K. Watanabe, T. Taniguchi, J. Kong, W. A. Tisdale, R. Ashoori, N. Gedik, L. Fu, S. Y. Xu, and P. Jarillo-Herrero, Nature 588, 71 (2020).

    Article  ADS  Google Scholar 

  103. S. C. Baek, K. W. Park, D. S. Kil, Y. Jang, J. Park, K. J. Lee, and B. G. Park, Nat. Electron. 1, 398 (2018).

    Article  Google Scholar 

  104. G. Chen, S. Qi, J. Liu, D. Chen, J. Wang, S. Yan, Y. Zhang, S. Cao, M. Lu, S. Tian, K. Chen, P. Yu, Z. Liu, X. C. Xie, J. Xiao, R. Shindou, and J. H. Chen, Nat. Commun. 12, 6279 (2021).

    Article  ADS  Google Scholar 

  105. Q. Song, C. A. Occhialini, E. Ergeçen, B. Ilyas, D. Amoroso, P. Barone, J. Kapeghian, K. Watanabe, T. Taniguchi, A. S. Botana, S. Picozzi, N. Gedik, and R. Comin, Nature 602, 601 (2022).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shi-Jun Liang or Feng Miao.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 62122036, 62034004, 61921005, 61974176, 62204110, and 12074176), the Natural Science Foundation of Jiangsu Province (Grant No. BK20220775), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB44000000), the National Key R&D Program of China (Grant Nos. 2019YFB2205400, and 2019YFB2205402), and the Fundamental Research Funds for the Central Universities (Grant No. 020414380179). Feng Miao acknowledges the support from the AIQ foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, X., Li, Y., Cheng, B. et al. 2D materials for intelligent devices. Sci. China Phys. Mech. Astron. 66, 117504 (2023). https://doi.org/10.1007/s11433-022-2056-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-2056-1

Navigation