Skip to main content
Log in

Pressure-tuning domain-wall chirality in noncentrosymmetric magnetic Weyl semimetal CeAlGe

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Topological magnetic Weyl semimetals have been proposed to host controllable chiral domain walls which bear a great prospect in device applications. To exploit them in applications, it is important to have a proper way to tune and manipulate these domain walls. One possible means is through magnetoelastic coupling. The involvement of rare earth in the lately proposed RAlX (R = rare earth, X = Si and Ge) family magnetic Weyl semimetals may provide such a platform. Here we present the transport and thermodynamic properties of CeAlGe under hydrostatic pressure. We find that pressure enhances the antiferromagnetic exchange in CeAlGe but essentially retains its magnetic structure. A large topological Hall effect with a pronounced loop shape is observed within the magnetically ordered state, and it splits into two regions under pressure. Such an unusual electromagnetic response is inferred to be a consequence of chiral magnetic domain walls. The unprecedented concomitance of its evolution under pressure and the reentrance of antiferromagnetic order strongly suggest the capability of switching on/off this electromagnetic response in noncentrosymmetric magnetic Weyl semimetals via magnetoelastic coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Blundell, Magnetism in Condensed Matter (Oxford University Press, Oxford, 2001).

    Google Scholar 

  2. A. A. Maradudins, Handbook of Surface Science (Elsevier, Amsterdam, 2015).

    Google Scholar 

  3. Z. Huang, C. Lane, D. Yarotski, A. J. Taylor, and J.-X. Zhu, arXiv: 2106.02215.

  4. H. Weyl, Z. Physik 56, 330 (1929).

    Article  ADS  Google Scholar 

  5. N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys. 90, 015001 (2018), arXiv: 1705.01111.

    Article  ADS  Google Scholar 

  6. H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Phys. Rev. X 5, 011029 (2015), arXiv: 1501.00060.

    Google Scholar 

  7. S. Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C. C. Lee, S. M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. K. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, Science 349, 613 (2015), arXiv: 1502.03807.

    Article  ADS  Google Scholar 

  8. B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, Phys. Rev. X 5, 031013 (2015), arXiv: 1502.04684.

    Google Scholar 

  9. C. Shekhar, A. K. Nayak, Y. Sun, M. Schmidt, M. Nicklas, I. Leermakers, U. Zeitler, Y. Skourski, J. Wosnitza, Z. Liu, Y. Chen, W. Schnelle, H. Borrmann, Y. Grin, C. Felser, and B. Yan, Nat. Phys. 11, 645 (2015), arXiv: 1502.04361.

    Article  Google Scholar 

  10. N. J. Ghimire, Y. Luo, M. Neupane, D. J. Williams, E. D. Bauer, and F. Ronning, J. Phys.-Condens. Matter 27, 152201 (2015), arXiv: 1503.07571.

    Article  ADS  Google Scholar 

  11. C. L. Zhang, S. Y. Xu, I. Belopolski, Z. Yuan, Z. Lin, B. Tong, G. Bian, N. Alidoust, C. C. Lee, S. M. Huang, T. R. Chang, G. Chang, C. H. Hsu, H. T. Jeng, M. Neupane, D. S. Sanchez, H. Zheng, J. Wang, H. Lin, C. Zhang, H. Z. Lu, S. Q. Shen, T. Neupert, M. Zahid Hasan, and S. Jia, Nat. Commun. 7, 10735 (2016), arXiv: 1601.04208.

    Article  ADS  Google Scholar 

  12. Y. Luo, N. J. Ghimire, M. Wartenbe, H. Choi, M. Neupane, R. D. McDonald, E. D. Bauer, J. Zhu, J. D. Thompson, and F. Ronning, Phys. Rev. B 92, 205134 (2015), arXiv: 1506.01751.

    Article  ADS  Google Scholar 

  13. G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Phys. Rev. Lett. 107, 186806 (2011), arXiv: 1106.3125.

    Article  ADS  Google Scholar 

  14. J. Y. Liu, J. Hu, Q. Zhang, D. Graf, H. B. Cao, S. M. A. Radmanesh, D. J. Adams, Y. L. Zhu, G. F. Cheng, X. Liu, W. A. Phelan, J. Wei, M. Jaime, F. Balakirev, D. A. Tennant, J. F. Ditusa, I. Chiorescu, L. Spinu, and Z. Q. Mao, Nat. Mater. 16, 905 (2017), arXiv: 1507.07978.

    Article  ADS  Google Scholar 

  15. E. Liu, Y. Sun, N. Kumar, L. Muechler, A. Sun, L. Jiao, S. Y. Yang, D. Liu, A. Liang, Q. Xu, J. Kroder, V. Süß, H. Borrmann, C. Shekhar, Z. Wang, C. Xi, W. Wang, W. Schnelle, S. Wirth, Y. Chen, S. T. B. Goennenwein, and C. Felser, Nat. Phys. 14, 1125 (2018), arXiv: 1712.06722.

    Article  Google Scholar 

  16. Q. Q. Zeng, G. X. Gu, G. Shi, J. L. Shen, B. Ding, S. Zhang, X. K. Xi, C. Felser, Y. Q. Li, and E. K. Liu, Sci. China-Phys. Mech. Astron. 64, 287512 (2021), arXiv: 2106.02906.

    Article  ADS  Google Scholar 

  17. H. M. Weng, Sci. China-Phys. Mech. Astron. 62, 127031 (2019).

    Article  ADS  Google Scholar 

  18. Q. Wang, Y. Xu, R. Lou, Z. Liu, M. Li, Y. Huang, D. Shen, H. Weng, S. Wang, and H. Lei, Nat. Commun. 9, 3681 (2018), arXiv: 1712.09947.

    Article  ADS  Google Scholar 

  19. H. Yang, W. You, J. Wang, J. Huang, C. Xi, X. Xu, C. Cao, M. Tian, Z. A. Xu, J. Dai, and Y. Li, Phys. Rev. Mater. 4, 024202 (2020), arXiv: 1811.03485.

    Article  Google Scholar 

  20. J. Kübler, and C. Felser, EPL 108, 67001 (2014), arXiv: 1410.5985.

    Article  ADS  Google Scholar 

  21. I. Belopolski, K. Manna, D. S. Sanchez, G. Chang, B. Ernst, J. Yin, S. S. Zhang, T. Cochran, N. Shumiya, H. Zheng, B. Singh, G. Bian, D. Multer, M. Litskevich, X. Zhou, S. M. Huang, B. Wang, T. R. Chang, S. Y. Xu, A. Bansil, C. Felser, H. Lin, and M. Z. Hasan, Science 365, 1278 (2019), arXiv: 2004.00004.

    Article  ADS  Google Scholar 

  22. G. Chang, B. Singh, S. Y. Xu, G. Bian, S. M. Huang, C. H. Hsu, I. Belopolski, N. Alidoust, D. S. Sanchez, H. Zheng, H. Lu, X. Zhang, Y. Bian, T. R. Chang, H. T. Jeng, A. Bansil, H. Hsu, S. Jia, T. Neupert, H. Lin, and M. Z. Hasan, Phys. Rev. B 97, 041104 (2018).

    Article  ADS  Google Scholar 

  23. S. Y. Xu, N. Alidoust, G. Chang, H. Lu, B. Singh, I. Belopolski, D. S. Sanchez, X. Zhang, G. Bian, H. Zheng, M. A. Husanu, Y. Bian, S. M. Huang, C. H. Hsu, T. R. Chang, H. T. Jeng, A. Bansil, T. Neupert, V. N. Strocov, H. Lin, S. Jia, and M. Z. Hasan, Sci. Adv. 3, e1603266 (2017).

    Article  ADS  Google Scholar 

  24. D. S. Sanchez, G. Chang, I. Belopolski, H. Lu, J. X. Yin, N. Alidoust, X. Xu, T. A. Cochran, X. Zhang, Y. Bian, S. S. Zhang, Y. Y. Liu, J. Ma, G. Bian, H. Lin, S. Y. Xu, S. Jia, and M. Z. Hasan, Nat. Commun. 11, 3356 (2020), arXiv: 2006.14713.

    Article  ADS  Google Scholar 

  25. H. Su, X. Shi, J. Yuan, Y. Wan, E. Cheng, C. Xi, L. Pi, X. Wang, Z. Zou, N. Yu, W. Zhao, S. Li, and Y. Guo, Phys. Rev. B 103, 165128 (2021), arXiv: 2102.05558.

    Article  ADS  Google Scholar 

  26. H. Y. Yang, B. Singh, J. Gaudet, B. Lu, C. Y. Huang, W. C. Chiu, S. M. Huang, B. Wang, F. Bahrami, B. Xu, J. Franklin, I. Sochnikov, D. E. Graf, G. Xu, Y. Zhao, C. M. Hoffman, H. Lin, D. H. Torchinsky, C. L. Broholm, A. Bansil, and F. Tafti, Phys. Rev. B 103, 115143 (2021), arXiv: 2006.07943.

    Article  ADS  Google Scholar 

  27. M. M. Piva, J. C. Souza, V. Brousseau-Couture, K. R. Pakuszewski, J. K. John, C. Adriano, M. Côté, P. G. Pagliuso, and M. Nicklas, arXiv: 2111.05742.

  28. M. Lyu, J. Xiang, Z. Mi, H. Zhao, Z. Wang, E. Liu, G. Chen, Z. Ren, G. Li, and P. Sun, Phys. Rev. B 102, 085143 (2020), arXiv: 2001.05398.

    Article  ADS  Google Scholar 

  29. L. Wu, H. Zuo, L. Zhao, Y. Luo, and Z. Zhu, arXiv: 2201.05012.

  30. P. Puphal, V. Pomjakushin, N. Kanazawa, V. Ukleev, D. J. Gawryluk, J. Ma, M. Naamneh, N. C. Plumb, L. Keller, R. Cubitt, E. Pomjakushina, and J. S. White, Phys. Rev. Lett. 124, 017202 (2020), arXiv: 2001.06638.

    Article  ADS  Google Scholar 

  31. H. Y. Yang, B. Singh, B. Lu, C. Y. Huang, F. Bahrami, W. C. Chiu, D. Graf, S. M. Huang, B. Wang, H. Lin, D. Torchinsky, A. Bansil, and F. Tafti, APL Mater. 8, 011111 (2020), arXiv: 1910.09697.

    Article  ADS  Google Scholar 

  32. T. Suzuki, L. Savary, J. P. Liu, J. W. Lynn, L. Balents, and J. G. Checkelsky, Science 365, 377 (2019).

    Article  ADS  Google Scholar 

  33. B. Xu, J. Franklin, A. Jayakody, H. Y. Yang, F. Tafti, and I. Sochnikov, Adv. Quantum Tech. 4, 2000101 (2021).

    Article  Google Scholar 

  34. Y. Sun, C. Lee, H. Y. Yang, D. H. Torchinsky, F. Tafti, and J. Orenstein, Phys. Rev. B 104, 235119 (2021), arXiv: 2104.07706.

    Article  ADS  Google Scholar 

  35. G. Kresse, and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  ADS  Google Scholar 

  36. G. Kresse, and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  37. A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467 (1995).

    Article  ADS  Google Scholar 

  38. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  39. A. A. Mostofi, J. R. Yates, Y. S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Comput. Phys. Commun. 178, 685 (2008), arXiv: 0708.0650.

    Article  ADS  Google Scholar 

  40. V. I. Anisimov, D. E. Kondakov, A. V. Kozhevnikov, I. A. Nekrasov, Z. V. Pchelkina, J. W. Allen, S. K. Mo, H. D. Kim, P. Metcalf, S. Suga, A. Sekiyama, G. Keller, I. Leonov, X. Ren, and D. Vollhardt, Phys. Rev. B 71, 125119 (2005), arXiv: cond-mat/0407359.

    Article  ADS  Google Scholar 

  41. G. X. Zhi, C. Xu, S. Q. Wu, F. Ning, and C. Cao, Comput. Phys. Commun. 271, 108196 (2022), arXiv: 2110.11764.

    Article  Google Scholar 

  42. Q. S. Wu, S. N. Zhang, H. F. Song, M. Troyer, and A. A. Soluyanov, Comput. Phys. Commun. 224, 405 (2018), arXiv: 1703.07789.

    Article  ADS  Google Scholar 

  43. H. Hodovanets, C. J. Eckberg, P. Y. Zavalij, H. Kim, W. C. Lin, M. Zic, D. J. Campbell, J. S. Higgins, and J. Paglione, Phys. Rev. B 98, 245132 (2018), arXiv: 1808.04434.

    Article  ADS  Google Scholar 

  44. P. Puphal, C. Mielke, N. Kumar, Y. Soh, T. Shang, M. Medarde, J. S. White, and E. Pomjakushina, Phys. Rev. Mater. 3, 024204 (2019), arXiv: 1906.11627.

    Article  Google Scholar 

  45. T. Park, and J. D. Thompson, New J. Phys. 11, 055062 (2009), arXiv: 0908.2404.

    Article  ADS  Google Scholar 

  46. L. Wang, C. Wang, Z. Liu, J. Cheng, S. Miao, Y. Song, Y. Shi, and Y. Yang, Phys. Rev. B 100, 085122 (2019).

    Article  ADS  Google Scholar 

  47. P. Misra, Handbook of Metal Physics: Heavy-Fermion Systems (Elsevier, Amsterdam, 2008).

    Google Scholar 

  48. P. Noziéres, Eur. Phys. J. B 6, 447 (1998).

    Article  ADS  Google Scholar 

  49. Y. Luo, F. Ronning, N. Wakeham, X. Lu, T. Park, Z. A. Xu, and J. D. Thompson, Proc. Natl. Acad. Sci. USA 112, 13520 (2015), arXiv: 1501.03400.

    Article  ADS  Google Scholar 

  50. S. Doniach, Phys. B+C 91, 231 (1977).

    Article  ADS  Google Scholar 

  51. N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Rev. Mod. Phys. 82, 1539 (2010), arXiv: 0904.4154.

    Article  ADS  Google Scholar 

  52. W. L. Lee, S. Watauchi, V. L. Miller, R. J. Cava, and N. P. Ong, Science 303, 1647 (2004), arXiv: cond-mat/0405584.

    Article  ADS  Google Scholar 

  53. S. M. Disseler, S. R. Giblin, C. Dhital, K. C. Lukas, S. D. Wilson, and M. J. Graf, Phys. Rev. B 87, 060403 (2013), arXiv: 1212.5565.

    Article  ADS  Google Scholar 

  54. K. Ueda, J. Fujioka, Y. Takahashi, T. Suzuki, S. Ishiwata, Y. Taguchi, M. Kawasaki, and Y. Tokura, Phys. Rev. B 89, 075127 (2014).

    Article  ADS  Google Scholar 

  55. X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011), arXiv: 1007.0016.

    Article  ADS  Google Scholar 

  56. W. Witczak-Krempa, A. Go, and Y. B. Kim, Phys. Rev. B 87, 155101 (2013), arXiv: 1208.4099.

    Article  ADS  Google Scholar 

  57. Y. Yamaji, and M. Imada, Phys. Rev. X 4, 021035 (2014), arXiv: 1306.2022.

    Google Scholar 

  58. E. Y. Ma, Y. T. Cui, K. Ueda, S. Tang, K. Chen, N. Tamura, P. M. Wu, J. Fujioka, Y. Tokura, and Z. X. Shen, Science 350, 538 (2015).

    Article  ADS  Google Scholar 

  59. B. Lüthi, Physical Acoustics in the Solid State (Springer, Berlin, 2007).

    Google Scholar 

  60. Y. Taguchi, Y. Oohara, H. Yoshizawa, N. Nagaosa, and Y. Tokura, Science 291, 2573 (2001).

    Article  ADS  Google Scholar 

  61. J. Matsuno, N. Ogawa, K. Yasuda, F. Kagawa, W. Koshibae, N. Nagaosa, Y. Tokura, and M. Kawasaki, Sci. Adv. 2, e1600304 (2016), arXiv: 1607.07536.

    Article  ADS  Google Scholar 

  62. W. Wang, M. W. Daniels, Z. Liao, Y. Zhao, J. Wang, G. Koster, G. Rijnders, C. Z. Chang, D. Xiao, and W. Wu, Nat. Mater. 18, 1054 (2019), arXiv: 1812.07005.

    Article  ADS  Google Scholar 

  63. M. Lee, W. Kang, Y. Onose, Y. Tokura, and N. P. Ong, Phys. Rev. Lett. 102, 186601 (2009), arXiv: 0811.3146.

    Article  ADS  Google Scholar 

  64. A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G. Niklowitz, and P. Böni, Phys. Rev. Lett. 102, 186602 (2009), arXiv: 0902.1933.

    Article  ADS  Google Scholar 

  65. T. Schulz, R. Ritz, A. Bauer, M. Halder, M. Wagner, C. Franz, C. Pfleiderer, K. Everschor, M. Garst, and A. Rosch, Nat. Phys. 8, 301 (2012), arXiv: 1202.1176.

    Article  Google Scholar 

  66. N. Kanazawa, Y. Onose, T. Arima, D. Okuyama, K. Ohoyama, S. Wakimoto, K. Kakurai, S. Ishiwata, and Y. Tokura, Phys. Rev. Lett. 106, 156603 (2011).

    Article  ADS  Google Scholar 

  67. B. G. Ueland, C. F. Miclea, Y. Kato, O. Ayala-Valenzuela, R. D. McDonald, R. Okazaki, P. H. Tobash, M. A. Torrez, F. Ronning, R. Movshovich, Z. Fisk, E. D. Bauer, I. Martin, and J. D. Thompson, Nat. Commun. 3, 1067 (2012), arXiv: 1209.6024.

    Article  ADS  Google Scholar 

  68. T. Kurumaji, T. Nakajima, M. Hirschberger, A. Kikkawa, Y. Yamasaki, H. Sagayama, H. Nakao, Y. Taguchi, T. Arima, and Y. Tokura, Science 365, 914 (2019), arXiv: 1805.10719.

    Article  ADS  Google Scholar 

  69. J. Ye, Y. B. Kim, A. J. Millis, B. I. Shraiman, P. Majumdar, and Z. Tešanović, Phys. Rev. Lett. 83, 3737 (1999), arXiv: cond-mat/9905007.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Cao or Yongkang Luo.

Additional information

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

This work was supported by the Open Research Fund of Songshan Lake Materials Laboratory (Grant No. 2022SLABFN27), National Natural Science Foundation of China (Grant Nos. 12274364, and U1932155), Fundamental Research Funds for the Central Universities of China (Grant No. 2019kfyXMBZ071), National Key R&D Program of China (Grant No. 2022YFA1602602), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022B1515120020), and Pioneer and Leading Goose R&D Program of Zhejiang (Grant No. 2022SDXHDX0005). The authors thank Joe D. Thompson for insightful discussions.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Li, Y., Zeng, H. et al. Pressure-tuning domain-wall chirality in noncentrosymmetric magnetic Weyl semimetal CeAlGe. Sci. China Phys. Mech. Astron. 66, 237011 (2023). https://doi.org/10.1007/s11433-022-2051-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-2051-4

PACS number(s)

Navigation