Skip to main content
Log in

NMSSM neutralino dark matter for CDF II W-boson mass and muon g − 2 and the promising prospect of direct detection

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Two experiments from the Fermilab, E989 and CDF II, have reported two anomalies for muon g − 2 and W-boson mass that may indicate the new physics at the low energy scale. Here we examine the possibility of a common origin of these two anomalies in the Next-to-Minimal Supersymmetric Standard Model. Considering various experimental and astrophysical constraints such as the Higgs mass, collider data, flavor physics, dark matter relic density, and direct detection experiments, we find that lighter electroweakinos and sleptons can generate sufficient contributions to muon g − 2 and mW. Moreover, the corresponding bino-like neutralino dark matter mass is in the ∼ 180–280 GeV range. Interestingly, the favored dark matter (DM) mass region can soon be entirely probed by ongoing direct detection experiments like PandaX-4T, XENONnT, LUX-ZEPLIN, and DARWIN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Tanabashi, et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).

    Article  ADS  Google Scholar 

  2. T. Aoyama, N. Asmussen, M. Benayoun, J. Bijnens, T. Blum, M. Bruno, I. Caprini, C. M. Carloni Calame, M. Cé, G. Colangelo, F. Curciarello, H. Czyż, I. Danilkin, M. Davier, C. T. H. Davies, M. Della Morte, S. I. Eidelman, A. X. El-Khadra, A. Gérardin, D. Giusti, M. Golterman, S. Gottlieb, V. Gülpers, F. Hagelstein, M. Hayakawa, G. Herdoíza, D. W. Hertzog, A. Hoecker, M. Hoferichter, B. L. Hoid, R. J. Hudspith, F. Ignatov, T. Izubuchi, F. Jegerlehner, L. Jin, A. Keshavarzi, T. Kinoshita, B. Kubis, A. Kupich, A. Kupść, L. Laub, C. Lehner, L. Lellouch, I. Logashenko, B. Malaescu, K. Maltman, M. K. Marinković, P. Masjuan, A. S. Meyer, H. B. Meyer, T. Mibe, K. Miura, S. E. Müller, M. Nio, D. Nomura, A. Nyffeler, V. Pascalutsa, M. Passera, E. Perez del Rio, S. Peris, A. Portelli, M. Procura, C. F. Redmer, B. L. Roberts, P. Sánchez-Puertas, S. Serednyakov, B. Shwartz, S. Simula, D. Stöckinger, H. Stöckinger-Kim, P. Stoffer, T. Teubner, R. Van de Water, M. Vanderhaeghen, G. Venanzoni, G. von Hippel, H. Wittig, Z. Zhang, M. N. Achasov, A. Bashir, N. Cardoso, B. Chakraborty, E. H. Chao, J. Charles, A. Crivellin, O. Deineka, A. Denig, C. DeTar, C. A. Dominguez, A. E. Dorokhov, V. P. Druzhinin, G. Eichmann, M. Fael, C. S. Fischer, E. Gámiz, Z. Gelzer, J. R. Green, S. Guellati-Khelifa, D. Hatton, N. Hermansson-Truedsson, S. Holz, B. Hörz, M. Knecht, J. Koponen, A. S. Kronfeld, J. Laiho, S. Leupold, P. B. Mackenzie, W. J. Marciano, C. McNeile, D. Mohler, J. Monnard, E. T. Neil, A. V. Nesterenko, K. Ottnad, V. Pauk, A. E. Radzhabov, E. de Rafael, K. Raya, A. Risch, A. Rodríguez-Sánchez, P. Roig, T. San José, E. P. Solodov, R. Sugar, K. Y. Todyshev, A. Vainshtein, A. Vaquero Avilés-Casco, E. Weil, J. Wilhelm, R. Williams, and A. S. Zhevlakov, Phys. Rep. 887, 1 (2020), arXiv: 2006.04822.

    Article  ADS  Google Scholar 

  3. B. Abi, et al. (Muon g−2 Collaboration), Phys. Rev. Lett. 126, 141801 (2021), arXiv: 2104.03281.

    Article  ADS  Google Scholar 

  4. T. Aaltonen, et al. (CDF Collaboration), Science 376, 170 (2022).

    Article  ADS  Google Scholar 

  5. P. A. Zyla, et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

    Article  Google Scholar 

  6. Y. Z. Fan, T. P. Tang, Y. L. S. Tsai, and L. Wu, Phys. Rev. Lett. 129, 091802 (2022), arXiv: 2204.03693.

    Article  ADS  Google Scholar 

  7. C. R. Zhu, M. Y. Cui, Z. Q. Xia, Z. H. Yu, X. Huang, Q. Yuan, and Y. Z. Fan, arXiv: 2204.03767 astro-ph.HE.

  8. G.-W. Yuan, L. Zu, L. Feng, Y.-F. Cai, and Y.-Z. Fan, Sci. China-Phys. Mech. Astron. 65, 129512 (2022), arXiv: 2204.04183.

    Article  ADS  Google Scholar 

  9. J. M. Yang, and Y. Zhang, Sci. Bull. 67, 1430 (2022), arXiv: 2204.04202.

    Article  Google Scholar 

  10. C. T. Lu, L. Wu, Y. Wu, and B. Zhu, Phys. Rev. D 106, 035034 (2022), arXiv: 2204.03796.

    Article  ADS  Google Scholar 

  11. P. Athron, A. Fowlie, C. T. Lu, L. Wu, Y. Wu, and B. Zhu, arXiv: 2204.03996.

  12. J. de Blas, M. Pierini, L. Reina, and L. Silvestrini, arXiv: 2204.04204.

  13. A. Strumia, J. High Energ. Phys. 2022, 248 (2022).

    Article  Google Scholar 

  14. N. Aghanim, et al. (Planck Collaboration), Astron. Astrophys. 641, A6 (2020), arXiv: 1807.06209.

    Article  Google Scholar 

  15. D. Hooper, and L. Goodenough, Phys. Lett. B 697, 412 (2011), arXiv: 1010.2752.

    Article  ADS  Google Scholar 

  16. B. Zhou, Y. F. Liang, X. Huang, X. Li, Y. Z. Fan, L. Feng, and J. Chang, Phys. Rev. D 91, 123010 (2015), arXiv: 1406.6948.

    Article  ADS  Google Scholar 

  17. F. Calore, I. Cholis, and C. Weniger, J. Cosmol. Astropart. Phys. 2015, 038 (2015), arXiv: 1409.0042.

    Article  Google Scholar 

  18. T. Daylan, D. P. Finkbeiner, D. Hooper, T. Linden, S. K. N. Portillo, N. L. Rodd, and T. R. Slatyer, Phys. Dark Universe 12, 1 (2016), arXiv: 1402.6703.

    Article  ADS  Google Scholar 

  19. M. Y. Cui, Q. Yuan, Y. L. S. Tsai, and Y. Z. Fan, Phys. Rev. Lett. 118, 191101 (2017), arXiv: 1610.03840.

    Article  ADS  Google Scholar 

  20. A. Cuoco, M. Krämer, and M. Korsmeier, Phys. Rev. Lett. 118, 191102 (2017), arXiv: 1610.03071.

    Article  ADS  Google Scholar 

  21. M. Abdughani, Y. Z. Fan, L. Feng, Y. L. S. Tsai, L. Wu, and Q. Yuan, Sci. Bull. 66, 2170 (2021), arXiv: 2104.03274.

    Article  Google Scholar 

  22. J. Aalbers, et al. (LZ Collaboration), arXiv: 2207.03764.

  23. T. Moroi, Phys. Rev. D 53, 6565 (1996), arXiv: hep-ph/9512396 [erratum: Phys. Rev. D 56, 4424 (1997)].

    Article  ADS  Google Scholar 

  24. A. Fowlie, K. Kowalska, L. Roszkowski, E. M. Sessolo, and Y. L. S. Tsai, Phys. Rev. D 88, 055012 (2013), arXiv: 1306.1567.

    Article  ADS  Google Scholar 

  25. S. P. Martin, and J. D. Wells, Phys. Rev. D 64, 035003 (2001), arXiv: hep-ph/0103067.

    Article  ADS  Google Scholar 

  26. N. Abe, and M. Endo, Phys. Lett. B 564, 73 (2003).

    Article  ADS  Google Scholar 

  27. D. Stöckinger, J. Phys. G-Nucl. Part. Phys. 34, R45 (2007), arXiv: hep-ph/0609168.

    Article  ADS  Google Scholar 

  28. B. P. Padley, K. Sinha, and K. Wang, Phys. Rev. D 92, 055025 (2015), arXiv: 1505.05877.

    Article  ADS  Google Scholar 

  29. A. Czarnecki, and W. J. Marciano, Phys. Rev. D 64, 013014 (2001), arXiv: hep-ph/0102122.

    Article  ADS  Google Scholar 

  30. M. Lindner, M. Platscher, and F. S. Queiroz, Phys. Rep. 731, 1 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  31. M. Abdughani, K. Hikasa, L. Wu, J. M. Yang, and J. Zhao, J. High Energ. Phys. 2019, 095 (2019).

    Article  Google Scholar 

  32. Y. Gu, N. Liu, L. Su, and D. Wang, Nucl. Phys. B 969, 115481 (2021), arXiv: 2104.03239.

    Article  Google Scholar 

  33. H. Baer, V. Barger, and H. Serce, Phys. Lett. B 820, 136480 (2021), arXiv: 2104.07597.

    Article  Google Scholar 

  34. A. Aboubrahim, M. Klasen, P. Nath, and R. M. Syed, arXiv: 2107.06021.

  35. T. Biekötter, A. Grohsjean, S. Heinemeyer, C. Schwanenberger, and G. Weiglein, Eur. Phys. J. C 82, 178 (2022), arXiv: 2109.01128.

    Article  ADS  Google Scholar 

  36. A. Aboubrahim, M. Klasen, P. Nath, and R. M. Syed, Phys. Scr. 97, 054002 (2022), arXiv: 2112.04986.

    Article  ADS  Google Scholar 

  37. M. I. Ali, M. Chakraborti, U. Chattopadhyay, and S. Mukherjee, arXiv: 2112.09867.

  38. K. Wang, and J. Zhu, arXiv: 2112.14576.

  39. F. Domingo, and T. Lenz, J. High Energ. Phys. 2011, 101 (2011).

    Article  Google Scholar 

  40. O. Stål, G. Weiglein, and L. Zeune, J. High Energ. Phys. 2015, 158 (2015).

    Article  Google Scholar 

  41. K. Kowalska, S. Munir, L. Roszkowski, E. M. Sessolo, S. Trojanowski, and Y. L. S. Tsai, Phys. Rev. D 87, 115010 (2013), arXiv: 1211.1693.

    Article  ADS  Google Scholar 

  42. M. Carena, J. Osborne, N. R. Shah, and C. E. M. Wagner, Phys. Rev. D 100, 055002 (2019), arXiv: 1905.03768.

    Article  ADS  Google Scholar 

  43. S. Sekmen, et al. (ATLAS, CMS, and LHCb Collaborations), arXiv: 2204.03053.

  44. G. Aad, et al. (ATLAS Collaboration), arXiv: 2204.13072.

  45. F. Domingo, U. Ellwanger, and C. Hugonie, arXiv: 2209.03863.

  46. H. König, Z. Phys. C-Particles Fields 52, 159 (1991).

    Article  ADS  Google Scholar 

  47. U. Ellwanger, C. Hugonie, and A. M. Teixeira, Phys. Rep. 496, 1 (2010), arXiv: 0910.1785.

    Article  ADS  MathSciNet  Google Scholar 

  48. P. Athron, J. Park, D. Stöckinger, and A. Voigt, Comput. Phys. Commun. 190, 139 (2015), arXiv: 1406.2319.

    Article  ADS  Google Scholar 

  49. P. Athron, M. Bach, D. Harries, T. Kwasnitza, J. Park, D. Stöckinger, A. Voigt, and J. Ziebell, Comput. Phys. Commun. 230, 145 (2018), arXiv: 1710.03760.

    Article  ADS  Google Scholar 

  50. P. Athron, M. Bach, D. H. J. Jacob, W. Kotlarski, D. Stöckinger, and A. Voigt, arXiv: 2204.05285.

  51. M. J. G. Veltman, Nucl. Phys. B 123, 89 (1977).

    Article  ADS  Google Scholar 

  52. G. Aad, et al. (ATLAS Collaboration), Eur. Phys. J. C 80, 123 (2020), arXiv: 1908.08215.

    Article  ADS  Google Scholar 

  53. G. Aad, et al. (ATLAS Collaboration), Phys. Rev. D 101, 052005 (2020).

    Article  ADS  Google Scholar 

  54. ATLAS Collaboration, arXiv: 2207.00320.

  55. S. Heinemeyer, O. Stal, and G. Weiglein, Phys. Lett. B 710, 201 (2012), arXiv: 1112.3026.

    Article  ADS  Google Scholar 

  56. A. Fowlie, M. Kazana, K. Kowalska, S. Munir, L. Roszkowski, E. M. Sessolo, S. Trojanowski, and Y. L. S. Tsai, Phys. Rev. D 86, 075010 (2012), arXiv: 1206.0264.

    Article  ADS  Google Scholar 

  57. G. Aad, et al. (ATLAS Collaboration), arXiv: 2207.00348.

  58. G. Aad, et al. (ATLAS Collaboration), J. High Energ. Phys. 2022, 104 (2022).

    Google Scholar 

  59. ATLAS Collaboration, Nature 607, 52 (2022).

    Article  ADS  Google Scholar 

  60. Y. Amhis, et al. (HFLAV Collaboration), arXiv: 2206.07501.

  61. R. Aaij, et al. (LHCb Collaboration), Phys. Rev. Lett. 128, 041801 (2022), arXiv: 2108.09284.

    Article  ADS  Google Scholar 

  62. C. Amole, et al. (PICO Collaboration), Phys. Rev. D 100, 022001 (2019), arXiv: 1902.04031.

    Article  ADS  Google Scholar 

  63. E. Aprile, et al. (XENON Collaboration), Phys. Rev. Lett. 119, 181301 (2017), arXiv: 1705.06655.

    Article  ADS  Google Scholar 

  64. D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, Publ. Astron. Soc. Pac. 125, 306 (2013), arXiv: 1202.3665.

    Article  ADS  Google Scholar 

  65. U. Ellwanger, and C. Hugonie, Comput. Phys. Commun. 175, 290 (2006), arXiv: hep-ph/0508022.

    Article  ADS  Google Scholar 

  66. G. Bélanger, F. Boudjema, P. Brun, A. Pukhov, S. Rosier-Lees, P. Salati, and A. Semenov, Comput. Phys. Commun. 182, 842 (2011), arXiv: 1004.1092.

    Article  ADS  Google Scholar 

  67. G. Jungman, M. Kamionkowski, and K. Griest, Phys. Rep. 267, 195 (1996).

    Article  ADS  Google Scholar 

  68. Y. Meng, et al. (PandaX-4T Collaboration), Phys. Rev. Lett. 127, 261802 (2021), arXiv: 2107.13438.

    Article  ADS  Google Scholar 

  69. E. Aprile, et al. (XENON Collaboration), J. Cosmol. Astropart. Phys. 2020, 031 (2020), arXiv: 2007.08796.

    Article  Google Scholar 

  70. D. S. Akerib, et al. (LZ Collaboration), arXiv: 1509.02910.

  71. M. Schumann, L. Baudis, L. Bütikofer, A. Kish, and M. Selvi, J. Cosmol. Astropart. Phys. 2015, 016 (2015), arXiv: 1506.08309.

    Article  Google Scholar 

  72. H. G. Zhang, et al. (PandaX Collaboration), Sci. China-Phys. Mech. Astron. 62, 031011 (2019), arXiv: 1806.02229.

    Article  Google Scholar 

  73. U. Ellwanger, J. F. Gunion, and C. Hugonie, J. High Energy Phys. 2005, 066 (2005), arXiv: hep-ph/0406215.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue-Lin Sming Tsai or Yi-Zhong Fan.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11921003, and U1738210), China Postdoctoral Science Foundation (Grant No. 2020M681757), and Key Research Program of the Chinese Academy of Sciences (Grant No. XDPB15). We appreciate Peter Athron and Ulrich Ellwanger for their insightful suggestions and helpful discussions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, TP., Abdughani, M., Feng, L. et al. NMSSM neutralino dark matter for CDF II W-boson mass and muon g − 2 and the promising prospect of direct detection. Sci. China Phys. Mech. Astron. 66, 239512 (2023). https://doi.org/10.1007/s11433-022-2046-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-2046-y

Keywords

Navigation