Skip to main content
Log in

Exploring the nature of black hole and gravity with an imminent merging binary of supermassive black holes

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

A supermassive binary black-hole candidate SDSS J1430+2303 reported recently motivates us to investigate an imminent binary of supermassive black holes as potential gravitational wave source, and the radiated gravitational waves at the end of the merger are shown to be in the band of space-borne detectors. We provide a general analysis on the required detecting sensitivity needed for probing such type gravitational wave sources and make a full discussion by considering two typically designed configurations of space-borne antennas. If a source is so close, it is possible to be detected with Taiji pathfinder-plus which is proposed to be an extension for the planned Taiji pathfinder by just adding an additional satellite to the initial two satellites. The gravitational wave detection on such kind of source enables us to explore the properties of supermassive black holes and the nature of gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Abbott, et al. (The LIGO Scientific Collaboration, the KAGRA Collaboration), arXiv: 2111.03606.

  2. W. R. Hu, and Y. L. Wu, Natl. Sci. Rev. 4, 685 (2017).

    Article  Google Scholar 

  3. J. Luo, L. S. Chen, H. Z. Duan, Y. G. Gong, S. Hu, J. Ji, Q. Liu, J. Mei, V. Milyukov, M. Sazhin, C. G. Shao, V. T. Toth, H. B. Tu, Y. Wang, Y. Wang, H. C. Yeh, M. S. Zhan, Y. Zhang, V. Zharov, and Z. B. Zhou, Class. Quantum Grav. 33, 035010 (2016), arXiv: 1512.02076.

    Article  ADS  Google Scholar 

  4. M. C. Begelman, R. D. Blandford, and M. J. Rees, Nature 287, 307 (1980).

    Article  ADS  Google Scholar 

  5. P. J. Armitage, and P. Natarajan, Astrophys. J. 634, 921 (2005), arXiv: astro-ph/0508493.

    Article  ADS  Google Scholar 

  6. P. Berczik, D. Merritt, R. Spurzem, and H. P. Bischof, Astrophys. J. 642, L21 (2006), arXiv: astro-ph/0601698.

    Article  ADS  Google Scholar 

  7. X. Chen, A. Sesana, P. Madau, and F. K. Liu, Astrophys. J. 729, 13 (2011), arXiv: 1012.4466.

    Article  ADS  Google Scholar 

  8. K. S. Thorne, and V. B. Braginskii, Astrophys. J. 204, L1 (1976).

    Article  ADS  Google Scholar 

  9. M. G. Haehnelt, Mon. Not. R. Astron. Soc. 269, 199 (1994), arXiv: astro-ph/9405032.

    Article  ADS  Google Scholar 

  10. A. H. Jaffe, and D. C. Backer, Astrophys. J. 583, 616 (2003), arXiv: astro-ph/0210148.

    Article  ADS  Google Scholar 

  11. N. Jiang, H. Yang, T. Wang, J. Zhu, Z. Lyu, L. Dou, Y. Wang, J. Wang, Z. Pan, H. Liu, X. Shu, and Z. Zheng, arXiv: 2201.11633.

  12. K. Oh, M. Sarzi, K. Schawinski, and S. K. Yi, Astrophys. J. Suppl. Ser. 195, 13 (2011), arXiv: 1106.1896.

    Article  ADS  Google Scholar 

  13. E. C. Bellm, S. R. Kulkarni, M. J. Graham, R. Dekany, R. M. Smith, R. Riddle, F. J. Masci, G. Helou, T. A. Prince, S. M. Adams, C. Barbarino, T. Barlow, J. Bauer, R. Beck, J. Belicki, R. Biswas, N. Blagorodnova, D. Bodewits, B. Bolin, V. Brinnel, T. Brooke, B. Bue, M. Bulla, R. Burruss, S. B. Cenko, C. K. Chang, A. Connolly, M. Coughlin, J. Cromer, V. Cunningham, K. De, A. Delacroix, V. Desai, D. A. Duev, G. Eadie, T. L. Farnham, M. Feeney, U. Feindt, D. Flynn, A. Franckowiak, S. Frederick, C. Fremling, A. Gal-Yam, S. Gezari, M. Giomi, D. A. Goldstein, V. Z. Golkhou, A. Goobar, S. Groom, E. Hacopians, D. Hale, J. Henning, A. Y. Q. Ho, D. Hover, J. Howell, T. Hung, D. Huppenkothen, D. Imel, W. H. Ip, Ž. Ivezić, E. Jackson, L. Jones, M. Juric, M. M. Kasliwal, S. Kaspi, S. Kaye, M. S. P. Kelley, M. Kowalski, E. Kramer, T. Kupfer, W. Landry, R. R. Laher, C. D. Lee, H. W. Lin, Z. Y. Lin, R. Lunnan, M. Giomi, A. Mahabal, P. Mao, A. A. Miller, S. Monkewitz, P. Murphy, C. C. Ngeow, J. Nordin, P. Nugent, E. Ofek, M. T. Patterson, B. Penprase, M. Porter, L. Rauch, U. Rebbapragada, D. Reiley, M. Rigault, H. Rodriguez, J. Roestel, B. Rusholme, J. Santen, S. Schulze, D. L. Shupe, L. P. Singer, M. T. Soumagnac, R. Stein, J. Surace, J. Sollerman, P. Szkody, F. Taddia, S. Terek, A. Van Sistine, S. van Velzen, W. T. Vestrand, R. Walters, C. Ward, Q. Z. Ye, P. C. Yu, L. Yan, and J. Zolkower, Public. Astron. Soci. Pacific 131, 018002 (2019), arXiv: 1902.01932.

    Article  ADS  Google Scholar 

  14. T. An, Y. Zhang, A. Wang, X. Shu, H. Yang, N. Jiang, L. Dou, Z. Pan, T. Wang, and Z. Zheng, arXiv: 2205.03208.

  15. Z. Luo, Z. K. Guo, G. Jin, Y. Wu, and W. Hu, Results Phys. 16, 102918 (2020).

    Article  Google Scholar 

  16. Z. Cao, and W. B. Han, Phys. Rev. D 96, 044028 (2017), arXiv: 1708.00166.

    Article  ADS  Google Scholar 

  17. S. Khan, S. Husa, M. Hannam, F. Ohme, M. Pürrer, X. J. Forteza, and A. Bohé, Phys. Rev. D 93, 044007 (2016), arXiv: 1508.07253.

    Article  ADS  Google Scholar 

  18. C. J. Moore, R. H. Cole, and C. P. L. Berry, Class. Quantum Grav. 32, 015014 (2015), arXiv: 1408.0740.

    Article  ADS  Google Scholar 

  19. C. Cutler, and É. E. Flanagan, Phys. Rev. D 49, 2658 (1994), arXiv: gr-qc/9402014.

    Article  ADS  Google Scholar 

  20. S. Babak, A. Taracchini, and A. Buonanno, Phys. Rev. D 95, 024010 (2017), arXiv: 1607.05661.

    Article  ADS  Google Scholar 

  21. R. Abbott, et al. (The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration), arXiv: 2112.06861.

  22. E. Berti, V. Cardoso, and C. M. Will, Phys. Rev. D 73, 064030 (2006), arXiv: gr-qc/0512160.

    Article  ADS  MathSciNet  Google Scholar 

  23. K. Kokkotas, and B. Schmidt, Living Rev. Rel. 2, 9 (1999).

    Article  Google Scholar 

  24. F. Echeverria, Phys. Rev. D 40, 3194 (1989).

    Article  ADS  Google Scholar 

  25. L. S. Finn, Phys. Rev. D 46, 5236 (1992), arXiv: gr-qc/9209010.

    Article  ADS  Google Scholar 

  26. É. É. Flanagan, and S. A. Hughes, Phys. Rev. D 57, 4535 (1998), arXiv: gr-qc/9701039.

    Article  ADS  Google Scholar 

  27. O. Dreyer, B. Kelly, B. Krishnan, L. S. Finn, D. Garrison, and R. Lopez-Aleman, Class. Quantum Grav. 21, 787 (2004), arXiv: grqc/0309007.

    Article  ADS  Google Scholar 

  28. L. Santamaría, F. Ohme, P. Ajith, B. Brügmann, N. Dorband, M. Hannam, S. Husa, P. Mösta, D. Pollney, C. Reisswig, E. L. Robinson, J. Seiler, and B. Krishnan, Phys. Rev. D 82, 064016 (2010), arXiv: 1005.3306.

    Article  ADS  Google Scholar 

  29. E. Barausse, A. Buonanno, S. A. Hughes, G. Khanna, S. O’Sullivan, and Y. Pan, Phys. Rev. D 85, 024046 (2012), arXiv: 1110.3081.

    Article  ADS  Google Scholar 

  30. R. Carballo-Rubio, F. Di Filippo, S. Liberati, and M. Visser, Phys. Rev. D 98, 124009 (2018), arXiv: 1809.08238.

    Article  ADS  MathSciNet  Google Scholar 

  31. V. Cardoso, and P. Pani, Living Rev. Relativ. 22, 4 (2019), arXiv: 1904.05363.

    Article  ADS  Google Scholar 

  32. H. Yang, A. Zimmerman, A. Zenginoğlu, F. Zhang, E. Berti, and Y. Chen, Phys. Rev. D 88, 044047 (2013), arXiv: 1307.8086.

    Article  ADS  Google Scholar 

  33. J. W. York Jr., Phys. Rev. D 28, 2929 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  34. G. ’tHooft, Nucl. Phys. B 256, 727 (1985).

    Article  ADS  Google Scholar 

  35. C. Prescod-Weinstein, N. Afshordi, and M. L. Balogh, Phys. Rev. D 80, 043513 (2009), arXiv: 0905.3551.

    Article  ADS  Google Scholar 

  36. J. Abedi, H. Dykaar, and N. Afshordi, Phys. Rev. D 96, 082004 (2017), arXiv: 1612.00266.

    Article  ADS  Google Scholar 

  37. S. W. Hawking, Phys. Rev. Lett. 26, 1344 (1971).

    Article  ADS  Google Scholar 

  38. M. Isi, W. M. Farr, M. Giesler, M. A. Scheel, and S. A. Teukolsky, Phys. Rev. Lett. 127, 011103 (2021), arXiv: 2012.04486.

    Article  ADS  Google Scholar 

  39. W. Tichy, and P. Marronetti, Phys. Rev. D 78, 081501 (2008), arXiv: 0807.2985.

    Article  ADS  MathSciNet  Google Scholar 

  40. E. Barausse, J. Phys.-Conf. Ser. 228, 012050 (2010), arXiv: 0911.1274.

    Article  Google Scholar 

  41. D. Gerosa, and C. J. Moore, Phys. Rev. Lett. 117, 011101 (2016), arXiv: 1606.04226.

    Article  ADS  Google Scholar 

  42. J. A. González, U. Sperhake, B. Brügmann, M. Hannam, and S. Husa, Phys. Rev. Lett. 98, 091101 (2007), arXiv: gr-qc/0610154.

    Article  ADS  MathSciNet  Google Scholar 

  43. J. A. González, M. Hannam, U. Sperhake, B. Brügmann, and S. Husa, Phys. Rev. Lett. 98, 231101 (2007), arXiv: gr-qc/0702052.

    Article  ADS  Google Scholar 

  44. M. Campanelli, C. O. Lousto, Y. Zlochower, and D. Merritt, Phys. Rev. Lett. 98, 231102 (2007), arXiv: gr-qc/0702133.

    Article  ADS  Google Scholar 

  45. C. O. Lousto, and Y. Zlochower, Phys. Rev. Lett. 107, 231102 (2011), arXiv: 1108.2009.

    Article  ADS  Google Scholar 

  46. V. Varma, S. Biscoveanu, T. Islam, F. H. Shaik, C. J. Haster, M. Isi, W. M. Farr, S. E. Field, and S. Vitale, Phys. Rev. Lett. 128, 191102 (2022), arXiv: 2201.01302.

    Article  ADS  Google Scholar 

  47. L. Lindblom, B. J. Owen, and D. A. Brown, Phys. Rev. D 78, 124020 (2008), arXiv: 0809.3844.

    Article  ADS  Google Scholar 

  48. S. Mirshekari, N. Yunes, and C. M. Will, Phys. Rev. D 85, 024041 (2012), arXiv: 1110.2720.

    Article  ADS  Google Scholar 

  49. Y. Zhang, X. Liu, J. Qi, and H. Zhang, J. Cosmol. Astropart. Phys. 2018(8), 027 (2018), arXiv: 1805.02586.

    Article  Google Scholar 

  50. N. Yunes, and F. Pretorius, Phys. Rev. D 80, 122003 (2009), arXiv: 0909.3328.

    Article  ADS  Google Scholar 

  51. N. Cornish, L. Sampson, N. Yunes, and F. Pretorius, Phys. Rev. D 84, 062003 (2011), arXiv: 1105.2088.

    Article  ADS  Google Scholar 

  52. K. Chatziioannou, N. Yunes, and N. Cornish, Phys. Rev. D 86, 022004 (2012), arXiv: 1204.2585.

    Article  ADS  Google Scholar 

  53. C. M. Will, Phys. Rev. D 57, 2061 (1998), arXiv: gr-qc/9709011.

    Article  ADS  Google Scholar 

  54. C. M. Will, and N. Yunes, Class. Quantum Grav. 21, 4367 (2004), arXiv: gr-qc/0403100.

    Article  ADS  Google Scholar 

  55. E. Berti, A. Buonanno, and C. M. Will, Class. Quantum Grav. 22, S943 (2005), arXiv: gr-qc/0504017.

    Article  ADS  Google Scholar 

  56. A. Stavridis, and C. M. Will, Phys. Rev. D 80, 044002 (2009), arXiv: 0906.3602.

    Article  ADS  Google Scholar 

  57. K. G. Arun, and C. M. Will, Class. Quantum Grav. 26, 155002 (2009), arXiv: 0904.1190.

    Article  ADS  Google Scholar 

  58. D. Keppel, and P. Ajith, Phys. Rev. D 82, 122001 (2010), arXiv: 1004.0284.

    Article  ADS  Google Scholar 

  59. K. Yagi, and T. Tanaka, Phys. Rev. D 81, 064008 (2010), arXiv: 0906.4269.

    Article  ADS  Google Scholar 

  60. W. C. Yang, Y. L. Ma, and Y. L. Wu, Sci. China-Phys. Mech. Astron. 64, 252011 (2021), arXiv: 2011.03665.

    Article  ADS  Google Scholar 

  61. G.-L. Li, Y. Tang, and Y.-L. Wu, Sci. China-Phys. Mech. Astron. 65, 100412 (2022), arXiv: 2112.14041.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Biao Han.

Additional information

This work was supported by the National Key R&D Program of China (Grant Nos. 2021YFC2203002, and 2020YFC2201501), the National Natural Science Foundation of China (Grant Nos. 11773059, 12173071, 12147103, and 11821505), and the Strategic Priority Research Program of the CAS (Grant No. XDA15021102). Wen-Biao Han was supported by the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-006).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, X., Han, WB., Luo, Z. et al. Exploring the nature of black hole and gravity with an imminent merging binary of supermassive black holes. Sci. China Phys. Mech. Astron. 66, 230411 (2023). https://doi.org/10.1007/s11433-022-2028-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-2028-7

Navigation