Skip to main content
Log in

Exploration of B-site alloying in partially reducing Pb toxicity and regulating thermodynamic stability and electronic properties of halide perovskites

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Alloying strategies provide a high degree of freedom for reducing lead toxicity, improving thermodynamic stability, and tuning the optoelectronic properties of ABX3 halide perovskites by varying the alloying element species and their contents. Given the key role of B-site cations in contributing band edge states and modulating structure factors in halide perovskites, the partial replacement of Pb2+ with different B-site metal ions has been proposed. Although several experimental attempts have been made to date, the effect of B-site alloying on the stability and electronic properties of halide perovskites has not been fully explored. Herein, we take cubic CsPbBr3 perovskite as the prototype material and systematically explore the effects of B-site alloying on Pb-containing perovskites. According to the presence or absence of the corresponding perovskite phase, the ten alloying elements investigated are classified into three types (i.e., Type I: Sn, Ge, Ca, Sr; Type II: Cd, Mg, Mn; Type III: Ba, Zn, Cu). Based on the first-principles calculations, we obtain the following conclusions. First, these B-site alloys will exist as disordered solid solutions rather than ordered structures at room temperature throughout the composition space. Second, the alloying of Sn and Ge enhances the thermodynamic stability of the cubic perovskite host, whereas the alloying of the other elements has no remarkable effect on the thermodynamic stability of the cubic perovskite host. Third, the underlying physical mechanism for bandgap tuning can be attributed to the atomic orbital energy mismatch or quantum confinement effect. Fourth, the alloying of different elements demonstrates the diversity in the regulation of crystal structure and electronic properties, indicating potential applications in photovoltaics and self-trapped exciton-based light-emitting applications. Our work provides theoretical guidance for using alloying strategies to reduce lead toxicity, enhance stability, and optimize the electronic properties of halide perovskites to meet the needs of optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, Inorg. Chem. 52, 9019 (2013).

    Article  Google Scholar 

  2. H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel, and N. G. Park, Sci. Rep. 2, 591 (2012).

    Article  Google Scholar 

  3. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Science 342, 341 (2013).

    Article  ADS  Google Scholar 

  4. X. G. Zhao, J. H. Yang, Y. Fu, D. Yang, Q. Xu, L. Yu, S. H. Wei, and L. Zhang, J. Am. Chem. Soc. 139, 2630 (2017).

    Article  Google Scholar 

  5. X. G. Zhao, D. Yang, Y. Sun, T. Li, L. Zhang, L. Yu, and A. Zunger, J. Am. Chem. Soc. 139, 6718 (2017).

    Article  Google Scholar 

  6. J. S. Manser, M. I. Saidaminov, J. A. Christians, O. M. Bakr, and P. V. Kamat, Acc. Chem. Res. 49, 330 (2016).

    Article  Google Scholar 

  7. M. Mohammadi, S. Gholipour, M. Malekshahi Byranvand, Y. Abdi, N. Taghavinia, and M. Saliba, ACS Appl. Mater. Interfaces 13, 45455 (2021).

    Article  Google Scholar 

  8. X. G. Zhao, D. Yang, J. C. Ren, Y. Sun, Z. Xiao, and L. Zhang, Joule 2, 1662 (2018).

    Article  Google Scholar 

  9. L. Xu, S. Yuan, H. Zeng, and J. Song, Mater. Today Nano 6, 100036 (2019).

    Article  Google Scholar 

  10. T. Li, S. Luo, X. Wang, and L. Zhang, Adv. Mater. 33, 2008574 (2021).

    Article  Google Scholar 

  11. X. Wang, T. Li, B. Xing, M. Faizan, K. Biswas, and L. Zhang, J. Phys. Chem. Lett. 12, 10532 (2021).

    Article  Google Scholar 

  12. Z. Li, M. Yang, J. S. Park, S. H. Wei, J. J. Berry, and K. Zhu, Chem. Mater. 28, 284 (2016).

    Article  Google Scholar 

  13. E. Zheng, Z. Niu, G. A. Tosado, H. Dong, Y. Albrikan, and Q. Yu, J. Phys. Chem. C 124, 18805 (2020).

    Article  Google Scholar 

  14. B. Gao, and J. Meng, Appl. Surf. Sci. 530, 147240 (2020).

    Article  Google Scholar 

  15. X. Wang, J. Yang, X. Wang, M. Faizan, H. Zou, K. Zhou, B. Xing, Y. Fu, and L. Zhang, J. Phys. Chem. Lett. 13, 5017 (2022).

    Article  Google Scholar 

  16. W. J. Mir, M. Jagadeeswararao, S. Das, and A. Nag, ACS Energy Lett. 2, 537 (2017).

    Article  Google Scholar 

  17. A. Sadhanala, S. Ahmad, B. Zhao, N. Giesbrecht, P. M. Pearce, F. Deschler, R. L. Z. Hoye, K. C. Gödel, T. Bein, P. Docampo, S. E. Dutton, M. F. L. De Volder, and R. H. Friend, Nano Lett. 15, 6095 (2015).

    Article  ADS  Google Scholar 

  18. I. Levchuk, A. Osvet, X. Tang, M. Brandl, J. D. Perea, F. Hoegl, G. J. Matt, R. Hock, M. Batentschuk, and C. J. Brabec, Nano Lett. 17, 2765 (2017).

    Article  ADS  Google Scholar 

  19. Y. Li, G. Na, S. Luo, X. He, and L. Zhang, Acta Phys. Chim. Sin. 37, 2007015 (2021).

    Google Scholar 

  20. A. Swarnkar, W. J. Mir, and A. Nag, ACS Energy Lett. 3, 286 (2018).

    Article  Google Scholar 

  21. C. Eames, J. M. Frost, P. R. F. Barnes, B. C. O’Regan, A. Walsh, and M. S. Islam, Nat. Commun. 6, 7497 (2015).

    Article  ADS  Google Scholar 

  22. J. Guo, Y. Fu, M. Lu, X. Zhang, S. V. Kershaw, J. Zhang, S. Luo, Y. Li, W. W. Yu, A. L. Rogach, L. Zhang, and X. Bai, Adv. Sci. 7, 2000930 (2020).

    Article  Google Scholar 

  23. Q. A. Akkerman, D. Meggiolaro, Z. Dang, F. De Angelis, and L. Manna, ACS Energy Lett. 2, 2183 (2017).

    Article  Google Scholar 

  24. A. L. Abdelhady, M. I. Saidaminov, B. Murali, V. Adinolfi, O. Voznyy, K. Katsiev, E. Alarousu, R. Comin, I. Dursun, L. Sinatra, E. H. Sargent, O. F. Mohammed, and O. M. Bakr, J. Phys. Chem. Lett. 7, 295 (2016).

    Article  Google Scholar 

  25. D. Liu, H. Peng, Q. Li, and R. Sa, J. Phys. Chem. Solids 161, 110413 (2022).

    Article  Google Scholar 

  26. C. H. Ri, Y. S. Kim, U. G. Jong, Y. H. Kye, S. H. Ryang, and C. J. Yu, RSC Adv. 11, 26432 (2021).

    Article  ADS  Google Scholar 

  27. J. Zhang, Y. Zhong, L. Chen, and L. Yang, Chem. Phys. Lett. 752, 137572 (2020).

    Article  Google Scholar 

  28. R. Sa, B. Luo, Z. Ma, L. Liang, and D. Liu, J. Solid State Chem. 309, 122956 (2022).

    Article  Google Scholar 

  29. A. Walle, and G. Ceder, J. Phase Equil. 23, 348 (2002).

    Article  Google Scholar 

  30. K. Yamamoto, S. Iikubo, J. Yamasaki, Y. Ogomi, and S. Hayase, J. Phys. Chem. C 121, 27797 (2017).

    Article  Google Scholar 

  31. C. Sutton, and S. V. Levchenko, Front. Chem. 8, 757 (2020).

    Article  ADS  Google Scholar 

  32. X. T. Wang, Y. H. Fu, G. R. Na, H. D. Li, and L. J. Zhang, Acta Phys. Sin. 68, 157101 (2019).

    Article  Google Scholar 

  33. W. Xiang, Z. Wang, D. J. Kubicki, X. Wang, W. Tress, J. Luo, J. Zhang, A. Hofstetter, L. Zhang, L. Emsley, M. Grätzel, and A. Hagfeldt, Nat. Commun. 10, 4686 (2019).

    Article  ADS  Google Scholar 

  34. H. Sato, S. A. Abd. Rahman, Y. Yamada, H. Ishii, and H. Yoshida, Nat. Mater. 21, 910 (2022).

    Article  ADS  Google Scholar 

  35. A. Zunger, S. H. Wei, L. G. Ferreira, and J. E. Bernard, Phys. Rev. Lett. 65, 353 (1990).

    Article  ADS  Google Scholar 

  36. S. H. Wei, L. G. Ferreira, J. E. Bernard, and A. Zunger, Phys. Rev. B 42, 9622 (1990).

    Article  ADS  Google Scholar 

  37. M. M. Tavakoli, S. M. Zakeeruddin, M. Grätzel, and Z. Fan, Adv. Mater. 30, 1705998 (2018).

    Article  Google Scholar 

  38. J. Li, X. Wang, Y. Tan, D. Liang, Y. Zou, L. Cai, T. Wu, K. Wen, Y. Wang, Y. Li, T. Song, L. Wang, and B. Sun, Adv. Opt. Mater. 8, 2001073 (2020).

    Article  Google Scholar 

  39. A. Goyal, S. McKechnie, D. Pashov, W. Tumas, M. van Schilfgaarde, and V. Stevanović, Chem. Mater. 30, 3920 (2018).

    Article  Google Scholar 

  40. J. C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traoré, L. Pedesseau, M. Kepenekian, F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet, J. Even, and A. D. Mohite, Nat. Commun. 9, 2254 (2018).

    Article  ADS  Google Scholar 

  41. K. J. Lee, B. Turedi, L. Sinatra, A. A. Zhumekenov, P. Maity, I. Dursun, R. Naphade, N. Merdad, A. Alsalloum, S. Oh, N. Wehbe, M. N. Hedhili, C. H. Kang, R. C. Subedi, N. Cho, J. S. Kim, B. S. Ooi, O. F. Mohammed, and O. M. Bakr, Nano Lett. 19, 3535 (2019).

    Article  ADS  Google Scholar 

  42. Y. Jiang, C. Qin, M. Cui, T. He, K. Liu, Y. Huang, M. Luo, L. Zhang, H. Xu, S. Li, J. Wei, Z. Liu, H. Wang, G. H. Kim, M. Yuan, and J. Chen, Nat. Commun. 10, 1868 (2019).

    Article  ADS  Google Scholar 

  43. J. K. Chen, J. P. Ma, S. Q. Guo, Y. M. Chen, Q. Zhao, B. B. Zhang, Z. Y. Li, Y. Zhou, J. Hou, Y. Kuroiwa, C. Moriyoshi, O. M. Bakr, J. Zhang, and H. T. Sun, Chem. Mater. 31, 3974 (2019).

    Article  Google Scholar 

  44. N. Phung, R. Félix, D. Meggiolaro, A. Al-Ashouri, G. Sousa e Silva, C. Hartmann, J. Hidalgo, H. Köbler, E. Mosconi, B. Lai, R. Gunder, M. Li, K. L. Wang, Z. K. Wang, K. Nie, E. Handick, R. G. Wilks, J. A. Marquez, B. Rech, T. Unold, J. P. Correa-Baena, S. Albrecht, F. De Angelis, M. Bär, and A. Abate, J. Am. Chem. Soc. 142, 2364 (2020).

    Article  Google Scholar 

  45. X. Zhang, X. Ren, B. Liu, R. Munir, X. Zhu, D. Yang, J. Li, Y. Liu, D. M. Smilgies, R. Li, Z. Yang, T. Niu, X. Wang, A. Amassian, K. Zhao, and S. F. Liu, Energy Environ. Sci. 10, 2095 (2017).

    Article  Google Scholar 

  46. R. Zeng, L. Zhang, Y. Xue, B. Ke, Z. Zhao, D. Huang, Q. Wei, W. Zhou, and B. Zou, J. Phys. Chem. Lett. 11, 2053 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiaoling Xu or Yuhao Fu.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12004131, and 22090044), and the Jilin Province Science and Technology Development Program (Grant No. 20210508044RQ). Calculations were performed in part at the high-performance computing center of Jilin University.

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

11433_2022_2020_MOESM1_ESM.pdf

Exploration of B-site alloying in partially reducing Pb toxicity and regulating thermodynamic stability and electronic properties of halide perovskites

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Faizan, M., Zhou, K. et al. Exploration of B-site alloying in partially reducing Pb toxicity and regulating thermodynamic stability and electronic properties of halide perovskites. Sci. China Phys. Mech. Astron. 66, 237311 (2023). https://doi.org/10.1007/s11433-022-2020-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-2020-5

Keywords

Navigation