Skip to main content
Log in

Planckian dissipation and non-Ginzburg-Landau type upper critical field in Bi2201

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Resistivity and Hall effect measurements have been carried out on a micro-fabricated bridge of Bi2201 single crystal at low temperatures down to 0.4 K under high magnetic fields. When superconductivity is crashed by a high magnetic field, the recovered “normal state” resistivity still shows a linear temperature dependence in the low temperature region. Combining with the effective mass and the charge carrier density, we get a linear scattering rate 1/τ = αkBT/ħ with 0.77 < α < 1.16, which gives a strong evidence of the Planckian dissipation. Furthermore, our results reveal a new type of temperature dependence of the upper critical field, \({H_{c2}}\left( T \right) = {H^ * }\sqrt {\left( {1 - t} \right)/\left( {t + 0.154} \right)} \), which is totally different from the expectation of the Ginzburg-Landau theory, and suggests the existence of uncondensed Cooper pairs above Hc2(T) line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Martin, A. T. Fiory, R. M. Fleming, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. B 41, 846 (1990).

    Article  ADS  Google Scholar 

  2. P. Fournier, P. Mohanty, E. Maiser, S. Darzens, T. Venkatesan, C. J. Lobb, G. Czjzek, R. A. Webb, and R. L. Greene, Phys. Rev. Lett. 81, 4720 (1998).

    Article  ADS  Google Scholar 

  3. Y. Dagan, M. M. Qazilbash, C. P. Hill, V. N. Kulkarni, and R. L. Greene, Phys. Rev. Lett. 92, 167001 (2004), arXiv: cond-mat/0310475.

    Article  ADS  Google Scholar 

  4. F. F. Tafti, F. Laliberté, M. Dion, J. Gaudet, P. Fournier, and L. Taillefer, Phys. Rev. B 90, 024519 (2014), arXiv: 1405.6248.

    Article  ADS  Google Scholar 

  5. K. Jin, N. P. Butch, K. Kirshenbaum, J. Paglione, and R. L. Greene, Nature 476, 73 (2011).

    Article  Google Scholar 

  6. J. Yuan, Q. Chen, K. Jiang, Z. Feng, Z. Lin, H. Yu, G. He, J. Zhang, X. Jiang, X. Zhang, Y. Shi, Y. Zhang, M. Qin, Z. G. Cheng, N. Tamura, Y. Yang, T. Xiang, J. Hu, I. Takeuchi, K. Jin, and Z. Zhao, Nature 602, 431 (2022).

    Article  ADS  Google Scholar 

  7. R. A. Cooper, Y. Wang, B. Vignolle, O. J. Lipscombe, S. M. Hayden, Y. Tanabe, T. Adachi, Y. Koike, M. Nohara, H. Takagi, C. Proust, and N. E. Hussey, Science 323, 603 (2009).

    Article  ADS  Google Scholar 

  8. R. Daou, N. Doiron-Leyraud, D. LeBoeuf, S. Y. Li, F. Laliberté, O. Cyr-Choinière, Y. J. Jo, L. Balicas, J. Q. Yan, J. S. Zhou, J. B. Goodenough, and L. Taillefer, Nat. Phys. 5, 31 (2009), arXiv: 0806.2881.

    Article  Google Scholar 

  9. N. Doiron-Leyraud, O. Cyr-Choinière, S. Badoux, A. Ataei, C. Collignon, A. Gourgout, S. Dufour-Beauséjour, F. F. Tafti, F. Laliberté, M. E. Boulanger, M. Matusiak, D. Graf, M. Kim, J. S. Zhou, N. Momono, T. Kurosawa, H. Takagi, and L. Taillefer, Nat. Commun. 8, 2044 (2017), arXiv: 1712.05113.

    Article  ADS  Google Scholar 

  10. A. Legros, S. Benhabib, W. Tabis, F. Laliberté, M. Dion, M. Lizaire, B. Vignolle, D. Vignolles, H. Raffy, Z. Z. Li, P. Auban-Senzier, N. Doiron-Leyraud, P. Fournier, D. Colson, L. Taillefer, and C. Proust, Nat. Phys. 15, 142 (2019).

    Article  Google Scholar 

  11. N. Doiron-Leyraud, P. Auban-Senzier, S. René de Cotret, C. Bourbonnais, D. Jérome, K. Bechgaard, and L. Taillefer, Phys. Rev. B 80, 214531 (2009), arXiv: 0912.0559.

    Article  ADS  Google Scholar 

  12. S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, Phys. Rev. B 81, 184519 (2010), arXiv: 0905.4427.

    Article  ADS  Google Scholar 

  13. S. A. Grigera, R. S. Perry, A. J. Schofield, M. Chiao, S. R. Julian, G. G. Lonzarich, S. I. Ikeda, Y. Maeno, A. J. Millis, and A. P. Mackenzie, Science 294, 329 (2001).

    Article  ADS  Google Scholar 

  14. H. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Rev. Mod. Phys. 79, 1015 (2007), arXiv: cond-mat/0606317.

    Article  ADS  Google Scholar 

  15. M. A. Tanatar, J. Paglione, C. Petrovic, and L. Taillefer, Science 316, 1320 (2007).

    Article  ADS  Google Scholar 

  16. O. Trovarelli, C. Geibel, S. Mederle, C. Langhammer, F. M. Grosche, P. Gegenwart, M. Lang, G. Sparn, and F. Steglich, Phys. Rev. Lett. 85, 626 (2000).

    Article  ADS  Google Scholar 

  17. S. Sachdev, and B. Keimer, Phys. Today 64, 29 (2011), arXiv: 1102.4628.

    Article  Google Scholar 

  18. C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams, and A. E. Ruckenstein, Phys. Rev. Lett. 63, 1996 (1989).

    Article  ADS  Google Scholar 

  19. E. M. Motoyama, G. Yu, I. M. Vishik, O. P. Vajk, P. K. Mang, and M. Greven, Nature 445, 186 (2007), arXiv: cond-mat/0609386.

    Article  ADS  Google Scholar 

  20. C. Collignon, S. Badoux, S. A. A. Afshar, B. Michon, F. Laliberté, O. Cyr-Choinière, J. S. Zhou, S. Licciardello, S. Wiedmann, N. Doiron-Leyraud, and L. Taillefer, Phys. Rev. B 95, 224517 (2017), arXiv: 1607.05693.

    Article  ADS  Google Scholar 

  21. S. Kawasaki, C. Lin, P. L. Kuhns, A. P. Reyes, and G. Q. Zheng, Phys. Rev. Lett. 105, 137002 (2010), arXiv: 1008.4277.

    Article  ADS  Google Scholar 

  22. T. Kondo, T. Takeuchi, T. Yokoya, S. Tsuda, S. Shin, and U. Mizutani, J. Electron Spectr. Relat. Phenomena 137-140, 663 (2004).

    Article  Google Scholar 

  23. J. Zaanen, Nature 430, 512 (2004).

    Article  ADS  Google Scholar 

  24. J. Zaanen, SciPost Phys. 6, 61 (2019), arXiv: 1807.10951.

    Article  MathSciNet  ADS  Google Scholar 

  25. J. Zaanen, arXiv: 2110.00961.

  26. J. A. N. Bruin, H. Sakai, R. S. Perry, and A. P. Mackenzie, Science 339, 804 (2013).

    Article  ADS  Google Scholar 

  27. G. Grissonnanche, Y. Fang, A. Legros, S. Verret, F. Laliberté, C. Collignon, J. Zhou, D. Graf, P. A. Goddard, L. Taillefer, and B. J. Ramshaw, Nature 595, 667 (2021), arXiv: 2011.13054.

    Article  ADS  Google Scholar 

  28. N. R. Poniatowski, T. Sarkar, R. P. S. M. Lobo, S. Das Sarma, and R. L. Greene, Phys. Rev. B 104, 235138 (2021), arXiv: 2109.00513.

    Article  ADS  Google Scholar 

  29. H. Luo, L. Fang, G. Mu, and H. H. Wen, J. Cryst. Growth 305, 222 (2007), arXiv: cond-mat/0611349.

    Article  ADS  Google Scholar 

  30. Y. Wang, Z. A. Xu, T. Kakeshita, S. Uchida, S. Ono, Y. Ando, and N. P. Ong, Phys. Rev. B 64, 224519 (2001), arXiv: cond-mat/0108242.

    Article  ADS  Google Scholar 

  31. B. Leridon, A. Défossez, J. Dumont, J. Lesueur, and J. P. Contour, Phys. Rev. Lett. 87, 197007 (2001), arXiv: cond-mat/0101094.

    Article  ADS  Google Scholar 

  32. T. Sato, T. Kamiyama, T. Takahashi, J. Mesot, A. Kaminski, J. C. Campuzano, H. M. Fretwell, T. Takeuchi, H. Ding, I. Chong, T. Terashima, and M. Takano, Phys. Rev. B 64, 054502 (2001).

    Article  ADS  Google Scholar 

  33. M. Lizaire, A. Legros, A. Gourgout, S. Benhabib, S. Badoux, F. Laliberté, M. E. Boulanger, A. Ataei, G. Grissonnanche, D. LeBoeuf, S. Licciardello, S. Wiedmann, S. Ono, H. Raffy, S. Kawasaki, G. Q. Zheng, N. Doiron-Leyraud, C. Proust, and L. Taillefer, Phys. Rev. B 104, 013515 (2021), arXiv: 2008.13692.

    Article  Google Scholar 

  34. J. E. Hoffman, K. McElroy, D.-H. Lee, K. M. Lang, H. Eisaki, S. Uchida, and J. C. Davis, Science 297, 1148 (2002).

    Article  ADS  Google Scholar 

  35. Q. Gu, S. Wan, Q. Tang, Z. Du, H. Yang, Q. H. Wang, R. Zhong, J. Wen, G. D. Gu, and H. H. Wen, Nat. Commun. 10, 1603 (2019), arXiv: 1808.06215.

    Article  ADS  Google Scholar 

  36. V. Z. Kresin, and S. A. Wolf, Phys. Rev. B 41, 4278 (1990).

    Article  ADS  Google Scholar 

  37. H. Ikuta, M. Matsuura, and T. Biwa, Phys. C-Supercond. 388–389, 361 (2003).

    Article  ADS  Google Scholar 

  38. Y. Yamada, T. Okamoto, U. Mizutani, and I. Hirabayashi, Phys. C-Supercond. 232, 269 (1994).

    Article  ADS  Google Scholar 

  39. E. Janod, R. Calemczuk, J. Y. Henry, and C. Marcenat, Phys. Lett. A 205, 105 (1995).

    Article  ADS  Google Scholar 

  40. C. Girod, D. LeBoeuf, A. Demuer, G. Seyfarth, S. Imajo, K. Kindo, Y. Kohama, M. Lizaire, A. Legros, A. Gourgout, H. Takagi, T. Kurosawa, M. Oda, N. Momono, J. Chang, S. Ono, G. Zheng, C. Marcenat, L. Taillefer, and T. Klein, Phys. Rev. B 103, 214506 (2021), arXiv: 2101.09221.

    Article  ADS  Google Scholar 

  41. R. A. Davison, K. Schalm, and J. Zaanen, Phys. Rev. B 89, 245116 (2014), arXiv: 1311.2451.

    Article  ADS  Google Scholar 

  42. S. A. Hartnoll, Nat. Phys. 11, 54 (2015), arXiv: 1405.3651.

    Article  Google Scholar 

  43. X. Y. Song, C. M. Jian, and L. Balents, Phys. Rev. Lett. 119, 216601 (2017), arXiv: 1705.00117.

    Article  ADS  Google Scholar 

  44. N. Barišić M. K. Chan, M. J. Veit, C. J. Dorow, Y. Ge, Y. Li, W. Tabis, Y. Tang, G. Yu, X. Zhao, and M. Greven, New J. Phys. 21, 113007 (2019).

    Article  ADS  Google Scholar 

  45. Y. Li, W. Tabis, G. Yu, N. Barišić, and M. Greven, Phys. Rev. Lett. 117, 197001 (2016), arXiv: 1610.01181.

    Article  ADS  Google Scholar 

  46. N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev. 147, 295 (1966).

    Article  ADS  Google Scholar 

  47. A. P. Mackenzie, S. R. Julian, G. G. Lonzarich, A. Carrington, S. D. Hughes, R. S. Liu, and D. C. Sinclair, Phys. Rev. Lett. 71, 1238 (1993).

    Article  ADS  Google Scholar 

  48. Y. Ando, G. S. Boebinger, A. Passner, L. F. Schneemeyer, T. Kimura, M. Okuya, S. Watauchi, J. Shimoyama, K. Kishio, K. Tamasaku, N. Ichikawa, and S. Uchida, Phys. Rev. B 60, 12475 (1999), arXiv: cond-mat/9908190.

    Article  ADS  Google Scholar 

  49. M. S. Osofsky, R. J. SoulenJr., S. A. Wolf, J. M. Broto, H. Rakoto, J. C. Ousset, G. Coffe, S. Askenazy, P. Pari, I. Bozovic, J. N. Eckstein, and G. F. Virshup, Phys. Rev. Lett. 71, 2315 (1993).

    Article  ADS  Google Scholar 

  50. Y. T. Hsu, M. Hartstein, A. J. Davies, A. J. Hickey, M. K. Chan, J. Porras, T. Loew, S. V. Taylor, H. Liu, A. G. Eaton, M. Le Tacon, H. Zuo, J. Wang, Z. Zhu, G. G. Lonzarich, B. Keimer, N. Harrison, and S. E. Sebastian, Proc. Natl. Acad. Sci. USA 118, e2021216118 (2021), arXiv: 2102.04927.

    Article  Google Scholar 

  51. H. H. Wen, W. L. Yang, Z. X. Zhao, and Y. M. Ni, Phys. Rev. Lett. 82, 410 (1999).

    Article  ADS  Google Scholar 

  52. H. H. Wen, X. H. Chen, W. L. Yang, and Z. X. Zhao, Phys. Rev. Lett. 85, 2805 (2000), arXiv: cond-mat/0003507.

    Article  ADS  Google Scholar 

  53. G. Grissonnanche, O. Cyr-Choinière, F. Laliberté, S. René de Cotret, A. Juneau-Fecteau, S. Dufour-Beauséjour, M. È. Delage, D. LeBoeuf, J. Chang, B. J. Ramshaw, D. A. Bonn, W. N. Hardy, R. Liang, S. Adachi, N. E. Hussey, B. Vignolle, C. Proust, M. Sutherland, S. Krämer, J. H. Park, D. Graf, N. Doiron-Leyraud, and L. Taillefer, Nat. Commun. 5, 3280 (2014), arXiv: 1303.3856.

    Article  ADS  Google Scholar 

  54. B. J. Ramshaw, J. Day, B. Vignolle, D. LeBoeuf, P. Dosanjh, C. Proust, L. Taillefer, R. Liang, W. N. Hardy, and D. A. Bonn, Phys. Rev. B 86, 174501 (2012), arXiv: 1209.1655.

    Article  ADS  Google Scholar 

  55. S. I. Vedeneev, A. G. M. Jansen, E. Haanappel, and P. Wyder, Phys. Rev. B 60, 12467 (1999).

    Article  ADS  Google Scholar 

  56. Z. A. Xu, N. P. Ong, Y. Wang, T. Kakeshita, and S. Uchida, Nature 406, 486 (2000).

    Article  ADS  Google Scholar 

  57. A. S. Alexandrov, V. N. Zavaritsky, W. Y. Liang, and P. L. Nevsky, Phys. Rev. Lett. 76, 983 (1996).

    Article  ADS  Google Scholar 

  58. S. D. Edkins, A. Kostin, K. Fujita, A. P. Mackenzie, H. Eisaki, S. Uchida, S. Sachdev, M. J. Lawler, E. A. Kim, J. C. Séamus Davis, and M. H. Hamidian, Science 364, 976 (2019), arXiv: 1802.04673.

    Article  ADS  Google Scholar 

  59. D. F. Agterberg, J. C. S. Davis, S. D. Edkins, E. Fradkin, D. J. Van Harlingen, S. A. Kivelson, P. A. Lee, L. Radzihovsky, J. M. Tranquada, and Y. Wang, Annu. Rev. Condens. Matter Phys. 11, 231 (2020).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11927809, NSFC-DFG12061131001, 61727805, and 11888101), the National Key R & D Program of China (Grant Nos. 2016YFA0300401, 2021YFA0718802, and 2018YFA0305604), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB25000000), and the Beijing Natural Science Foundation (Grant No. Z180010). We acknowledge Jan Zaanen, Richard Greene and Ilya Eremin for the useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Hu Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zang, Q., Zhu, Z., Xu, Z. et al. Planckian dissipation and non-Ginzburg-Landau type upper critical field in Bi2201. Sci. China Phys. Mech. Astron. 66, 237412 (2023). https://doi.org/10.1007/s11433-022-2017-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-2017-6

PACS number(s)

Navigation