Skip to main content
Log in

Noise-resistant quantum state compression readout

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Qubit measurement is generally the most error-prone operation that degrades the performance of near-term quantum devices, and the exponential decay of readout fidelity severely impedes the development of large-scale quantum information processing. Given these disadvantages, we present a quantum state readout method, named compression readout, that naturally avoids large multi-qubit measurement errors by compressing the quantum state into a single qubit for measurement. Our method generally outperforms direct measurements in terms of accuracy, and the advantage grows with the system size. Moreover, because only one-qubit measurements are performed, our method requires solely a fine readout calibration on one qubit and is free of correlated measurement error, which drastically diminishes the demand for device calibration. These advantages suggest that our method can immediately boost the readout performance of near-term quantum devices and will greatly benefit the development of large-scale quantum computing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. L. Huang, D. Wu, D. Fan, and X. Zhu, Sci. China Inf. Sci. 63, 180501 (2020).

    Article  Google Scholar 

  2. F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrá, J. R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis, Nature 574, 505 (2019), arXiv: 1910.11333.

    Article  ADS  Google Scholar 

  3. H. S. Zhong, H. Wang, Y. H. Deng, M. C. Chen, L. C. Peng, Y. H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X. Y. Yang, W. J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Science 370, 1460 (2020), arXiv: 2012.01625.

    Article  ADS  Google Scholar 

  4. Y. Wu, W. S. Bao, S. Cao, F. Chen, M. C. Chen, X. Chen, T. H. Chung, H. Deng, Y. Du, D. Fan, M. Gong, C. Guo, C. Guo, S. Guo, L. Han, L. Hong, H. L. Huang, Y. H. Huo, L. Li, N. Li, S. Li, Y. Li, F. Liang, C. Lin, J. Lin, H. Qian, D. Qiao, H. Rong, H. Su, L. Sun, L. Wang, S. Wang, D. Wu, Y. Xu, K. Yan, W. Yang, Y. Yang, Y. Ye, J. Yin, C. Ying, J. Yu, C. Zha, C. Zhang, H. Zhang, K. Zhang, Y. Zhang, H. Zhao, Y. Zhao, L. Zhou, Q. Zhu, C. Y. Lu, C. Z. Peng, X. Zhu, and J. W. Pan, Phys. Rev. Lett. 127, 180501 (2021), arXiv: 2106.14734.

    Article  ADS  Google Scholar 

  5. P. Jurcevic, A. Javadi-Abhari, L. S. Bishop, I. Lauer, D. F. Bogorin, M. Brink, L. Capelluto, O. Günlük, T. Itoko, N. Kanazawa, A. Kandala, G. A. Keefe, K. Krsulich, W. Landers, E. P. Lewandowski, D. T. McClure, G. Nannicini, A. Narasgond, H. M. Nayfeh, E. Pritchett, M. B. Rothwell, S. Srinivasan, N. Sundaresan, C. Wang, K. X. Wei, C. J. Wood, J. B. Yau, E. J. Zhang, O. E. Dial, J. M. Chow, and J. M. Gambetta, Quantum Sci. Technol. 6, 025020 (2021), arXiv: 2008.08571.

    Article  ADS  Google Scholar 

  6. J. L. O’Brien, Science 318, 1567 (2007), arXiv: 0803.1554.

    Article  ADS  Google Scholar 

  7. S. H. Tan, and P. P. Rohde, Rev. Phys. 4, 100030 (2019), arXiv: 1805.11827.

    Article  Google Scholar 

  8. X. L. Wang, L. K. Chen, W. Li, H. L. Huang, C. Liu, C. Chen, Y. H. Luo, Z. E. Su, D. Wu, Z. D. Li, H. Lu, Y. Hu, X. Jiang, C. Z. Peng, L. Li, N. L. Liu, Y. A. Chen, C. Y. Lu, and J. W. Pan, Phys. Rev. Lett. 117, 210502 (2016), arXiv: 1605.08547.

    Article  ADS  Google Scholar 

  9. X. L. Wang, Y. H. Luo, H. L. Huang, M. C. Chen, Z. E. Su, C. Liu, C. Chen, W. Li, Y. Q. Fang, X. Jiang, J. Zhang, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Phys. Rev. Lett. 120, 260502 (2018), arXiv: 1801.04043.

    Article  ADS  Google Scholar 

  10. G. Moody, V. J. Sorger, D. J. Blumenthal, P. W. Juodawlkis, W. Loh, C. Sorace-Agaskar, A. E. Jones, K. C. Balram, J. C. F. Matthews, A. Laing, M. Davanco, L. Chang, J. E. Bowers, N. Quack, C. Galland, I. Aharonovich, M. A. Wolff, C. Schuck, N. Sinclair, M. Lončar, T. Komljenovic, D. Weld, S. Mookherjea, S. Buckley, M. Radulaski, S. Reitzenstein, B. Pingault, B. Machielse, D. Mukhopadhyay, A. Akimov, A. Zheltikov, G. S. Agarwal, K. Srinivasan, J. Lu, H. X. Tang, W. Jiang, T. P. McKenna, A. H. Safavi-Naeini, S. Steinhauer, A. W. Elshaari, V. Zwiller, P. S. Davids, N. Martinez, M. Gehl, J. Chiaverini, K. K. Mehta, J. Romero, N. B. Lingaraju, A. M. Weiner, D. Peace, R. Cernansky, M. Lobino, E. Diamanti, L. T. Vidarte, and R. M. Camacho, J. Phys. Photonics 4, 012501 (2022), arXiv: 2102.03323.

    Article  ADS  Google Scholar 

  11. C. Monroe, and J. Kim, Science 339, 1164 (2013).

    Article  ADS  Google Scholar 

  12. I. Pogorelov, T. Feldker, C. D. Marciniak, L. Postler, G. Jacob, O. Krieglsteiner, V. Podlesnic, M. Meth, V. Negnevitsky, M. Stadler, B. Höfer, C. Wächter, K. Lakhmanskiy, R. Blatt, P. Schindler, and T. Monz, PRX Quantum 2, 020343 (2021), arXiv: 2101.11390.

    Article  ADS  Google Scholar 

  13. Y. He, S. K. Gorman, D. Keith, L. Kranz, J. G. Keizer, and M. Y. Simmons, Nature 571, 371 (2019).

    Article  ADS  Google Scholar 

  14. S. Ebadi, T. T. Wang, H. Levine, A. Keesling, G. Semeghini, A. Omran, D. Bluvstein, R. Samajdar, H. Pichler, W. W. Ho, S. Choi, S. Sachdev, M. Greiner, V. Vuletić, and M. D. Lukin, Nature 595, 227 (2021), arXiv: 2012.12281.

    Article  ADS  Google Scholar 

  15. C. Guo, Y. Zhao, and H. L. Huang, Phys. Rev. Lett. 126, 070502 (2021), arXiv: 2011.02621.

    Article  ADS  Google Scholar 

  16. H. L. Huang, Y. Du, M. Gong, Y. Zhao, Y. Wu, C. Wang, S. Li, F. Liang, J. Lin, Y. Xu, R. Yang, T. Liu, M. H. Hsieh, H. Deng, H. Rong, C. Z. Peng, C. Y. Lu, Y. A. Chen, D. Tao, X. Zhu, and J. W. Pan, Phys. Rev. Appl. 16, 024051 (2021), arXiv: 2010.06201.

    Article  ADS  Google Scholar 

  17. J. Liu, K. H. Lim, K. L. Wood, W. Huang, C. Guo, and H.-L. Huang, Sci. China-Phys. Mech. Astron. 64, 290311 (2021).

    Article  ADS  Google Scholar 

  18. H. L. Huang, X. L. Wang, P. P. Rohde, Y. H. Luo, Y. W. Zhao, C. Liu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Optica 5, 193 (2018), arXiv: 1801.06316.

    Article  ADS  Google Scholar 

  19. M. Schuld, and N. Killoran, Phys. Rev. Lett. 122, 040504 (2019).

    Article  ADS  Google Scholar 

  20. J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, Nature 549, 195 (2017), arXiv: 1611.09347.

    Article  ADS  Google Scholar 

  21. V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow, and J. M. Gambetta, Nature 567, 209 (2019), arXiv: 1804.11326.

    Article  ADS  Google Scholar 

  22. V. Saggio, B. E. Asenbeck, A. Hamann, T. Strömberg, P. Schiansky, V. Dunjko, N. Friis, N. C. Harris, M. Hochberg, D. Englund, S. Wölk, H. J. Briegel, and P. Walther, Nature 591, 229 (2021), arXiv: 2103.06294.

    Article  ADS  Google Scholar 

  23. S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther, Science 335, 303 (2012), arXiv: 1110.1381.

    Article  ADS  MathSciNet  Google Scholar 

  24. H. L. Huang, Q. Zhao, X. Ma, C. Liu, Z. E. Su, X. L. Wang, L. Li, N. L. Liu, B. C. Sanders, C. Y. Lu, and J. W. Pan, Phys. Rev. Lett. 119, 050503 (2017), arXiv: 1707.00400.

    Article  ADS  Google Scholar 

  25. H. L. Huang, W. S. Bao, T. Li, F. G. Li, X. Q. Fu, S. Zhang, H. L. Zhang, and X. Wang, Quantum Inf. Process. 16, 199 (2017).

    Article  ADS  Google Scholar 

  26. H. L. Huang, Y. W. Zhao, T. Li, F. G. Li, Y. T. Du, X. Q. Fu, S. Zhang, X. Wang, and W. S. Bao, Front. Phys. 12, 120305 (2017), arXiv: 1612.02886.

    Article  ADS  Google Scholar 

  27. E. F. Dumitrescu, A. J. McCaskey, G. Hagen, G. R. Jansen, T. D. Morris, T. Papenbrock, R. C. Pooser, D. J. Dean, and P. Lougovski, Phys. Rev. Lett. 120, 210501 (2018), arXiv: 1801.03897.

    Article  ADS  Google Scholar 

  28. Y. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. Johnson, M. Kieferová, I. D. Kivlichan, T. Menke, B. Peropadre, N. P. D. Sawaya, S. Sim, L. Veis, and A. Aspuru-Guzik, Chem. Rev. 119, 10856 (2019).

    Article  Google Scholar 

  29. B. Bauer, S. Bravyi, M. Motta, and G. K. L. Chan, Chem. Rev. 120, 12685 (2020).

    Article  Google Scholar 

  30. S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, and X. Yuan, Rev. Mod. Phys. 92, 015003 (2020).

    Article  ADS  Google Scholar 

  31. F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, S. Boixo, M. Broughton, B. B. Buckley, D. A. Buell, B. Burkett, N. Bushnell, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, S. Demura, A. Dunsworth, D. Eppens, E. Farhi, A. Fowler, B. Foxen, C. Gidney, M. Giustina, R. Graff, S. Habegger, M. P. Harrigan, A. Ho, S. Hong, T. Huang, W. J. Huggins, L. Ioffe, S. V. Isakov, E. Jeffrey, Z. Jiang, C. Jones, D. Kafri, K. Kechedzhi, J. Kelly, S. Kim, P. V. Klimov, A. Korotkov, F. Kostritsa, D. Landhuis, P. Laptev, M. Lindmark, E. Lucero, O. Martin, J. M. Martinis, J. R. McClean, M. McEwen, A. Megrant, X. Mi, M. Mohseni, W. Mruczkiewicz, J. Mutus, O. Naaman, M. Neeley, C. Neill, H. Neven, M. Yuezhen Niu, T. E. O’Brien, E. Ostby, A. Petukhov, H. Putterman, C. Quintana, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, D. Strain, K. J. Sung, M. Szalay, T. Y. Takeshita, A. Vainsencher, T. White, N. Wiebe, Z. J. Yao, P. Yeh, and A. Zalcman, Science 369, 1084 (2020), arXiv: 2004.04174.

    Article  MathSciNet  Google Scholar 

  32. A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta, Nature 549, 242 (2017), arXiv: 1704.05018.

    Article  ADS  Google Scholar 

  33. C. Liu, H. L. Huang, C. Chen, B. Y. Wang, X. L. Wang, T. Yang, L. Li, N. L. Liu, J. P. Dowling, T. Byrnes, C. Y. Lu, and J. W. Pan, Optica 6, 264 (2019).

    Article  ADS  Google Scholar 

  34. H. L. Huang, M. Narozniak, F. Liang, Y. Zhao, A. D. Castellano, M. Gong, Y. Wu, S. Wang, J. Lin, Y. Xu, H. Deng, H. Rong, J. P. Dowling, C. Z. Peng, T. Byrnes, X. Zhu, and J. W. Pan, Phys. Rev. Lett. 126, 090502 (2021), arXiv: 2009.07590.

    Article  ADS  Google Scholar 

  35. M. R. Geller, Phys. Rev. Lett. 127, 090502 (2021), arXiv: 2109.04449.

    Article  ADS  Google Scholar 

  36. B. Nachman, M. Urbanek, W. A. de Jong, and C. W. Bauer, npj Quantum Inf. 6, 84 (2020), arXiv: 1910.01969.

    Article  ADS  Google Scholar 

  37. S. Bravyi, S. Sheldon, A. Kandala, D. C. Mckay, and J. M. Gambetta, Phys. Rev. A 103, 042605 (2021), arXiv: 2006.14044.

    Article  ADS  Google Scholar 

  38. P. D. Nation, H. Kang, N. Sundaresan, and J. M. Gambetta, PRX Quantum 2, 040326 (2021), arXiv: 2108.12518.

    Article  ADS  Google Scholar 

  39. A. W. R. Smith, K. E. Khosla, C. N. Self, and M. S. Kim, Sci. Adv. 7, eabi8009 (2021).

    Article  ADS  Google Scholar 

  40. E. O. Brigham, and R. E. Morrow, IEEE Spectr. 4, 63 (1967).

    Article  Google Scholar 

  41. W.-H. Chen, C. Smith, and S. Fralick, IEEE Trans. Commun. 25, 1004 (1977).

    Article  Google Scholar 

  42. J. Makhoul, IEEE Trans. Acoust. Speech Signal Process. 28, 27 (1980).

    Article  Google Scholar 

  43. G. Alsmeyer, Chebyshev’s Inequality (Springer, Berlin, 2011).

    Book  Google Scholar 

  44. S. Ferracin, S. T. Merkel, D. McKay, and A. Datta, Phys. Rev. A 104, 042603 (2021), arXiv: 2103.06603.

    Article  ADS  Google Scholar 

  45. M. M. Wilde, Quantum Information Theory (Cambridge University Press, Cambridge, 2013).

    Book  MATH  Google Scholar 

  46. Q. Zhu, S. Cao, F. Chen, M. C. Chen, X. Chen, T. H. Chung, H. Deng, Y. Du, D. Fan, M. Gong, C. Guo, C. Guo, S. Guo, L. Han, L. Hong, H. L. Huang, Y. H. Huo, L. Li, N. Li, S. Li, Y. Li, F. Liang, C. Lin, J. Lin, H. Qian, D. Qiao, H. Rong, H. Su, L. Sun, L. Wang, S. Wang, D. Wu, Y. Wu, Y. Xu, K. Yan, W. Yang, Y. Yang, Y. Ye, J. Yin, C. Ying, J. Yu, C. Zha, C. Zhang, H. Zhang, K. Zhang, Y. Zhang, H. Zhao, Y. Zhao, L. Zhou, C. Y. Lu, C. Z. Peng, X. Zhu, and J. W. Pan, Sci. Bull. 67, 240 (2022), arXiv: 2109.03494.

    Article  Google Scholar 

  47. Z. Chen, et al. (Google Quantum AI), Nature 595, 383 (2021).

    Article  Google Scholar 

  48. K. Rolston-Duce, Demonstrating benefits of quantum upgradable design strategy: System model H1–2 first to prove 2,048 quantum volume (Quantinuum, 2021).

  49. M. Cramer, M. B. Plenio, S. T. Flammia, R. Somma, D. Gross, S. D. Bartlett, O. Landon-Cardinal, D. Poulin, and Y. K. Liu, Nat. Commun. 1, 149 (2010), arXiv: 1101.4366.

    Article  ADS  Google Scholar 

  50. A. W. Harrow, A. Hassidim, and S. Lloyd, Phys. Rev. Lett. 103, 150502 (2009), arXiv: 0811.3171.

    Article  ADS  MathSciNet  Google Scholar 

  51. J. P. Liu, H. Ø. Kolden, H. K. Krovi, N. F. Loureiro, K. Trivisa, and A. M. Childs, Proc. Natl. Acad. Sci. U.S.A. 118, e2026805118 (2021), arXiv: 2011.03185.

    Article  Google Scholar 

  52. R. Sweke, J. P. Seifert, D. Hangleiter, and J. Eisert, Quantum 5, 417 (2021).

    Article  Google Scholar 

  53. Y. Li, and S. C. Benjamin, Phys. Rev. X 7, 021050 (2017).

    Google Scholar 

  54. K. Temme, S. Bravyi, and J. M. Gambetta, Phys. Rev. Lett. 119, 180509 (2017), arXiv: 1612.02058.

    Article  ADS  MathSciNet  Google Scholar 

  55. A. Kandala, K. Temme, A. D. Córcoles, A. Mezzacapo, J. M. Chow, and J. M. Gambetta, Nature 567, 491 (2019), arXiv: 1805.04492.

    Article  ADS  Google Scholar 

  56. S. Endo, S. C. Benjamin, and Y. Li, Phys. Rev. X 8, 031027 (2018), arXiv: 1712.09271.

    Google Scholar 

  57. Z. Cai, npj Quantum Inf. 7, 80 (2021), arXiv: 2007.01265.

    Article  ADS  Google Scholar 

  58. S. Zhang, Y. Lu, K. Zhang, W. Chen, Y. Li, J. N. Zhang, and K. Kim, Nat. Commun. 11, 587 (2020), arXiv: 1905.10135.

    Article  ADS  Google Scholar 

  59. C. Song, J. Cui, H. Wang, J. Hao, H. Feng, and Y. Li, Sci. Adv. 5, eaaw5686 (2019), arXiv: 1812.10903.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wan-Su Bao or He-Liang Huang.

Additional information

He-Liang Huang was supported by the Youth Talent Lifting Project (Grant No. 2020-JCJQ-QT-030), National Natural Science Foundation of China (Grants Nos. 11905294, and 12274464), China Postdoctoral Science Foundation, and Open Research Fund from State Key Laboratory of High Performance Computing of China (Grant No. 201901-01). We gratefully acknowledge Hefei Advanced Computing Center for hardware support with the numerical experiments.

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information to

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, C., Xu, XY., Niu, YF. et al. Noise-resistant quantum state compression readout. Sci. China Phys. Mech. Astron. 66, 230311 (2023). https://doi.org/10.1007/s11433-022-2005-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-2005-x

Keywords

Navigation