Skip to main content
Log in

Antiferromagnetic insulating state in quasi-one-dimensional K2Cr3As3H

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Quasi-one-dimensional (Q1D) Cr-based pnictide K2Cr3As3 exhibits superconductivity probably with spin-triplet pairing. It is of fundamental importance to explore the parent compound from which superconductivity emerges. Here we report the synthesis, crystal structure, physical properties, and density functional theory (DFT) calculations of (nearly) fully hydrogenized K2Cr3As3H. It is found that the intercalation of hydrogen in K2Cr3As3 leads to absence of metallicity as well as superconductivity. An antiferromagnetic transition nearby room temperature is evidenced from the measurements of magnetic susceptibility and heat capacity. The antiferromagnetic insulating state can be reproduced by the DFT calculations, which show a novel non-collinear co-planar magnetic order. Our result sheds light on the mechanism of unconventional superconductivity in Q1D Cr-based superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. K. Bao, J. Y. Liu, C. W. Ma, Z. H. Meng, Z. T. Tang, Y. L. Sun, H. F. Zhai, H. Jiang, H. Bai, C. M. Feng, Z. A. Xu, and G. H. Cao, Phys. Rev. X 5, 011013 (2015).

    Google Scholar 

  2. G. H. Cao, J. K. Bao, Z. T. Tang, Y. Liu, and H. Jiang, Philos. Mag. 97, 591 (2017), arXiv: 1609.09635.

    Article  ADS  Google Scholar 

  3. R. Y. Chen, and N. L. Wang, Rep. Prog. Phys. 82, 012503 (2018).

    Article  ADS  Google Scholar 

  4. C. Noce, Europhys. Lett. 130, 67001 (2020).

    Article  ADS  Google Scholar 

  5. Z. T. Tang, J. K. Bao, Y. Liu, Y. L. Sun, A. Ablimit, H. F. Zhai, H. Jiang, C. M. Feng, Z. A. Xu, and G. H. Cao, Phys. Rev. B 91, 020506 (2015), arXiv: 1412.2596.

    Article  ADS  Google Scholar 

  6. Z. T. Tang, J. K. Bao, Z. Wang, H. Bai, H. Jiang, Y. Liu, H. F. Zhai, C. M. Feng, Z. A. Xu, and G. H. Cao, Sci. China Mater. 58, 16 (2015).

    Article  Google Scholar 

  7. Q. G. Mu, B. B. Ruan, B. J. Pan, T. Liu, J. Yu, K. Zhao, G. F. Chen, and Z. A. Ren, Phys. Rev. Mater. 2, 034803 (2018), arXiv: 1801.01010.

    Article  Google Scholar 

  8. H. Z. Zhi, T. Imai, F. L. Ning, J. K. Bao, and G. H. Cao, Phys. Rev. Lett. 114, 147004 (2015), arXiv: 1501.00713.

    Article  ADS  Google Scholar 

  9. J. Yang, Z. T. Tang, G. H. Cao, and G. Zheng, Phys. Rev. Lett. 115, 147002 (2015), arXiv: 1508.01012.

    Article  ADS  Google Scholar 

  10. D. T. Adroja, A. Bhattacharyya, M. Telling, Y. Feng, M. Smidman, B. Pan, J. Zhao, A. D. Hillier, F. L. Pratt, and A. M. Strydom, Phys. Rev. B 92, 134505 (2015), arXiv: 1505.05743.

    Article  ADS  Google Scholar 

  11. G. M. Pang, M. Smidman, W. B. Jiang, J. K. Bao, Z. F. Weng, Y. F. Wang, L. Jiao, J. L. Zhang, G. H. Cao, and H. Q. Yuan, Phys. Rev. B 91, 220502 (2015), arXiv: 1501.01880.

    Article  ADS  Google Scholar 

  12. Y. Liu, J. K. Bao, H. K. Zuo, A. Ablimit, Z. T. Tang, C. M. Feng, Z. W. Zhu, and G. H. Cao, Sci. China-Phys. Mech. Astron. 59, 657402 (2016), arXiv: 1601.00824.

    Article  Google Scholar 

  13. H. Zuo, J. K. Bao, Y. Liu, J. Wang, Z. Jin, Z. Xia, L. Li, Z. Xu, J. Kang, Z. Zhu, and G. H. Cao, Phys. Rev. B 95, 014502 (2017), arXiv: 1511.06169.

    Article  ADS  Google Scholar 

  14. X. Wu, F. Yang, C. Le, H. Fan, and J. Hu, Phys. Rev. B 92, 104511 (2015), arXiv: 1503.06707.

    Article  ADS  Google Scholar 

  15. Y. Zhou, C. Cao, and F. C. Zhang, Sci. Bull. 62, 208 (2017).

    Article  Google Scholar 

  16. H. Jiang, G. H. Cao, and C. Cao, Sci. Rep. 5, 1 (2015).

    Google Scholar 

  17. J. Yang, J. Luo, C. Yi, Y. Shi, Y. Zhou, and G. Zheng, Sci. Adv. 7, eabl4432 (2021).

    Article  ADS  Google Scholar 

  18. P. A. Lee, N. Nagaosa, and X. G. Wen, Rev. Mod. Phys. 78, 17 (2006).

    Article  ADS  Google Scholar 

  19. Q. Si, R. Yu, and E. Abrahams, Nat. Rev. Mater. 1, 16017 (2016), arXiv: 1604.03566.

    Article  ADS  Google Scholar 

  20. X. X. Wu, C. C. Le, J. Yuan, H. Fan, and J. P. Hu, Chin. Phys. Lett. 32, 057401 (2015), arXiv: 1501.00412.

    Article  ADS  Google Scholar 

  21. J. Luo, J. Yang, R. Zhou, Q. G. Mu, T. Liu, Z. Ren, C. J. Yi, Y. G. Shi, and G. Zheng, Phys. Rev. Lett. 123, 047001 (2019), arXiv: 1905.06055.

    Article  ADS  Google Scholar 

  22. J. K. Bao, L. Li, Z. T. Tang, Y. Liu, Y. K. Li, H. Bai, C. M. Feng, Z. A. Xu, and G. H. Cao, Phys. Rev. B 91, 180404 (2015), arXiv: 1505.06525.

    Article  ADS  Google Scholar 

  23. K. M. Taddei, L. D. Sanjeewa, B. H. Lei, Y. Fu, Q. Zheng, D. J. Singh, A. S. Sefat, and C. dela Cruz, Phys. Rev. B 100, 220503 (2019), arXiv: 1905.03360.

    Article  ADS  Google Scholar 

  24. J. J. Xiang, Y. L. Yu, S. Q. Wu, B. Z. Li, Y. T. Shao, Z. T. Tang, J. K. Bao, and G. H. Cao, Phys. Rev. Mater. 3, 114802 (2019).

    Article  Google Scholar 

  25. Q. G. Mu, B. B. Ruan, B. J. Pan, T. Liu, J. Yu, K. Zhao, G. F. Chen, and Z. A. Ren, Phys. Rev. B 96, 140504 (2017), arXiv: 1707.09711.

    Article  ADS  Google Scholar 

  26. S. Q. Wu, C. Cao, and G. H. Cao, Phys. Rev. B 100, 155108 (2019), arXiv: 1908.05393.

    Article  ADS  Google Scholar 

  27. G. Cuono, C. Autieri, F. Forte, M. T. Mercaldo, A. Romano, A. Avella, and C. Noce, New J. Phys. 21, 063027 (2019), arXiv: 1812.01457.

    Article  ADS  Google Scholar 

  28. J. Rodríguez-Carvajal, Phys. B-Condensed Matter 192, 55 (1993).

    Article  ADS  Google Scholar 

  29. G. Kresse, and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  30. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  31. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  32. J. J. Xiang, Y. T. Shao, Y. W. Cui, L. P. Nie, S. Q. Wu, B. Z. Li, Z. Ren, T. Wu, and G. H. Cao, Phys. Rev. Mater. 4, 124802 (2020).

    Article  Google Scholar 

  33. L. Vegard, Z. Physik 5, 17 (1921).

    Article  ADS  Google Scholar 

  34. F. F. Balakirev, T. Kong, M. Jaime, R. D. McDonald, C. H. Mielke, A. Gurevich, P. C. Canfield, and S. L. Bud’ko, Phys. Rev. B 91, 220505 (2015), arXiv: 1505.05547.

    Article  ADS  Google Scholar 

  35. A. T. Petit, and P. L. Dulong, Annal. Chim. Phys. 10, 395 (1819).

    Google Scholar 

  36. S. Arrhenius, Zeitschrift Physikal. Chem. 4U, 96 (1889).

    Article  Google Scholar 

  37. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505 (1998).

    Article  ADS  Google Scholar 

  38. W. Wu, J. G. Cheng, K. Matsubayashi, P. P. Kong, F. K. Lin, C. Q. Jin, N. L. Wang, Y. Uwatoko, and J. L. Luo, Nat. Commun. 5, 1 (2014).

    Google Scholar 

  39. J. G. Cheng, K. Matsubayashi, W. Wu, J. P. Sun, F. K. Lin, J. L. Luo, and Y. Uwatoko, Phys. Rev. Lett. 114, 117001 (2015), arXiv: 1412.7883.

    Article  ADS  Google Scholar 

  40. J. K. Bao, Z. T. Tang, H. J. Jung, J. Y. Liu, Y. Liu, L. Li, Y. K. Li, Z. A. Xu, C. M. Feng, H. Chen, D. Y. Chung, V. P. Dravid, G. H. Cao, and M. G. Kanatzidis, J. Am. Chem. Soc. 140, 4391 (2018).

    Article  Google Scholar 

  41. Z. Y. Liu, Q. X. Dong, P. T. Yang, P. F. Shan, B. S. Wang, J. P. Sun, Z. L. Dun, Y. Uwatoko, G. F. Chen, X. L. Dong, Z. X. Zhao, and J. G. Cheng, Phys. Rev. Lett. 128, 187001 (2022), arXiv: 2201.06053.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Cao or Guang-Han Cao.

Additional information

This work was supported by the Key Research and Development Program of Zhejiang Province, China (Grant No. 2021C01002), and the National Natural Science Foundation of China (Grant Nos. 12050003, and 11674281).

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplemental Materials for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, BZ., Wu, SQ., Xiang, JJ. et al. Antiferromagnetic insulating state in quasi-one-dimensional K2Cr3As3H. Sci. China Phys. Mech. Astron. 66, 237411 (2023). https://doi.org/10.1007/s11433-022-1998-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-1998-0

Keywords

Navigation