Skip to main content
Log in

Wave effect of gravitational waves intersected with a microlens field: A new algorithm and supplementary study

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The increase in gravitational wave (GW) events has allowed receiving strong lensing image pairs of GWs. However, the wave effect (diffraction and interference) due to the microlens field contaminates the parameter estimation of the image pair, which may lead to a misjudgment of strong lensing signals. To quantify the influence of the microlens field, researchers need a large sample of statistical research. Nevertheless, due to the oscillation characteristic, the Fresnel-Kirchhoff diffraction integral’s computational time hinders this aspect’s study. Although many algorithms are available, most cannot be well applied to the case where the microlens field is embedded in galaxy/galaxy clusters. This work proposes a faster and more accurate algorithm for studying the wave optics effect of microlenses embedded in different types of strong lensing images. Additionally, we provide a quantitative estimation criterion for the lens plane boundary for the Fresnel-Kirchhoff diffraction integral. This algorithm can significantly facilitate the study of wave optics, particularly in the case of microlens fields embedded in galaxy/galaxy clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Aasi, et al. (LIGO Scientific Collaboration), Class. Quantum Grav. 32, 074001 (2015), arXiv: 1411.4547.

    Article  ADS  Google Scholar 

  2. B. P. Abbott, et al. (LIGO Scientific Collaboration, and Virgo Collaboration), Phys. Rev. Lett. 116, 061102 (2016), arXiv: 1602.03837.

    Article  ADS  MathSciNet  Google Scholar 

  3. F. Acernese, et al. (Virgo Collaboration), Class. Quantum Grav. 32, 024001 (2015), arXiv: 1408.3978.

    Article  ADS  Google Scholar 

  4. T. Akutsu, et al. (KAGRA Collaboration), Nat. Astron. 3, 35 (2019).

    Article  ADS  Google Scholar 

  5. B. P. Abbott, et al. (LIGO Scientific Collaboration, and Virgo Collaboration), Phys. Rev. X 6, 041015 (2016), arXiv: 1606.04856.

    Google Scholar 

  6. B. P. Abbott, et al. (LIGO Scientific Collaboration, and Virgo Collaboration), Phys. Rev. Lett. 116, 241103 (2016), arXiv: 1606.04855.

    Article  ADS  Google Scholar 

  7. B. P. Abbott, et al. (LIGO Scientific Collaboration, and Virgo Collaboration), Phys. Rev. Lett. 119, 141101 (2017), arXiv: 1709.09660.

    Article  ADS  Google Scholar 

  8. B. P. Abbott, et al. (LIGO Scientific Collaboration, and Virgo Collaboration), Phys. Rev. Lett. 119, 161101 (2017), arXiv: 1710.05832.

    Article  ADS  Google Scholar 

  9. B. P. Abbott, et al. (LIGO Scientific Collaboration, and Virgo Collaboration), Astrophys. J. 851, L35 (2017), arXiv: 1711.05578.

    Article  ADS  Google Scholar 

  10. B. P. Abbott, et al. (LIGO Scientific Collaboration, and Virgo Collaboration), Phys. Rev. Lett. 118, 221101 (2017), arXiv: 1706.01812.

    Article  ADS  Google Scholar 

  11. B. P. Abbott, et al. (LIGO Scientific Collaboration, and Virgo Collaboration), Phys. Rev. X 9, 031040 (2019), arXiv: 1811.12907.

    Google Scholar 

  12. R. Abbott, et al. (LIGO Scientific Collaboration, and Virgo Collaboration), Phys. Rev. X 11, 021053 (2021), arXiv: 2010.14527.

    Google Scholar 

  13. R. Abbott, et al. (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration), arXiv: 2111.03606.

  14. R. Takahashi, and T. Nakamura, Astrophys. J. 595, 1039 (2003), arXiv: astro-ph/0305055.

    Article  ADS  Google Scholar 

  15. P. Christian, S. Vitale, and A. Loeb, Phys. Rev. D 98, 103022 (2018), arXiv: 1802.02586.

    Article  ADS  MathSciNet  Google Scholar 

  16. M. Punturo, H. Lück, and M. Beker, Third generation gravitational wave observatory: The Einstein telescope, in: Advanced Interferometers and the Search for Gravitational Waves (Springer, Berlin, 2014).

    Google Scholar 

  17. B. P. Abbott, et al. (LIGO Scientific Collaboration), Class. Quantum Grav. 34, 044001 (2017), arXiv: 1607.08697.

    Article  ADS  Google Scholar 

  18. Z. Cao, L. F. Li, and Y. Wang, Phys. Rev. D 90, 062003 (2014).

    Article  ADS  Google Scholar 

  19. K. H. Lai, O. A. Hannuksela, A. Herrera-Martín, J. M. Diego, T. Broadhurst, and T. G. F. Li, Phys. Rev. D 98, 083005 (2018), arXiv: 1801.07840.

    Article  ADS  Google Scholar 

  20. S. Jung, and C. S. Shin, Phys. Rev. Lett. 122, 041103 (2019), arXiv: 1712.01396.

    Article  ADS  Google Scholar 

  21. O. A. Hannuksela, K. Haris, K. K. Y. Ng, S. Kumar, A. K. Mehta, D. Keitel, T. G. F. Li, and P. Ajith, Astrophys. J. 874, L2 (2019), arXiv: 1901.02674.

    Article  ADS  Google Scholar 

  22. R. Abbott, et al. (LIGO Scientific Collaboration, and Virgo Collaboration), Astrophys. J. 923, 14 (2021), arXiv: 2105.06384.

    Article  ADS  Google Scholar 

  23. M. H. Y. Cheung, J. Gais, O. A. Hannuksela, and T. G. F. Li, Mon. Not. R. Astron. Soc. 503, 3326 (2021), arXiv: 2012.07800.

    Article  ADS  Google Scholar 

  24. S. M. C. Yeung, M. H. Y. Cheung, J. A. J. Gais, O. A. Hannuksela, and T. G. F. Li, arXiv: 2112.07635.

  25. A. K. Meena, and J. S. Bagla, Mon. Not. R. Astron. Soc. 492, 1127 (2020), arXiv: 1903.11809.

    Article  ADS  Google Scholar 

  26. J. M. Diego, O. A. Hannuksela, P. L. Kelly, G. Pagano, T. Broadhurst, K. Kim, T. G. F. Li, and G. F. Smoot, Astron. Astrophys. 627, A130 (2019), arXiv: 1903.04513.

    Article  ADS  Google Scholar 

  27. A. Mishra, A. K. Meena, A. More, S. Bose, and J. S. Bagla, Mon. Not. R. Astron. Soc. 508, 4869 (2021), arXiv: 2102.03946.

    Article  ADS  Google Scholar 

  28. W. H. Press, W. T. Vetterling, S. A Teukolsky, and B. P Flannery, Numerical Recipes Example Book (FORTRAN) (Cambridge University Press, Cambridge, 1992).

    MATH  Google Scholar 

  29. D. Levin, Math. Comp. 38, 531 (1982).

    Article  MathSciNet  Google Scholar 

  30. L. N. G. Filon, Proc. R. Soc. Edinb. 49, 38 (1930).

    Article  Google Scholar 

  31. S. Xiang, Numer. Math. 105, 633 (2007).

    Article  MathSciNet  Google Scholar 

  32. A. Iserles, and S. P. Nørsett, Bit Numer. Math. 46, 549 (2006).

    Article  Google Scholar 

  33. X. Guo, and Y. Lu, Phys. Rev. D 102, 124076 (2020), arXiv: 2012.03474.

    Article  ADS  MathSciNet  Google Scholar 

  34. A. Ulmer, and J. Goodman, Astrophys. J. 442, 67 (1995), arXiv: astro-ph/9406042.

    Article  ADS  Google Scholar 

  35. P. Schneider, J. Ehlers, and E. E. Falco. Gravitational Lenses (Springer, New York, 1992).

    Book  Google Scholar 

  36. T. T. Nakamura, and S. Deguchi, Prog. Theor. Phys. Suppl. 133, 137 (1999).

    Article  ADS  Google Scholar 

  37. J. Wambsganss, Gravitational Microlensing, Dissertation for the Doctoral Degree (Heidelberg University, Heidelberg, 1990).

    Google Scholar 

  38. X. Chen, Y. Shu, G. Li, and W. Zheng, Astrophys. J. 923, 117 (2021), arXiv: 2110.07643.

    Article  ADS  Google Scholar 

  39. W. Zheng, X. Chen, G. Li, and H. Z. Chen, Astrophys. J. 931, 114 (2022), arXiv: 2204.10871.

    Article  ADS  Google Scholar 

  40. R. Kayser, S. Refsdal, and R. Stabell, Astron. Astrophys. 166, 36 (1986).

    ADS  Google Scholar 

  41. S. Deguchi, and W. D. Watson, Phys. Rev. D 34, 1708 (1986).

    Article  ADS  Google Scholar 

  42. Z. Gao, X. Chen, Y. M. Hu, J. D. Zhang, and S. J. Huang, Mon. Not. R. Astron. Soc. 512, 1 (2022), arXiv: 2102.10295.

    Article  ADS  Google Scholar 

  43. M. Oguri, J. M. Diego, N. Kaiser, P. L. Kelly, and T. Broadhurst, Phys. Rev. D 97, 023518 (2018), arXiv: 1710.00148.

    Article  ADS  Google Scholar 

  44. L. Dai, and T. Venumadhav, arXiv: 1702.04724.

  45. L. Dai, B. Zackay, T. Venumadhav, J. Roulet, and M. Zaldarriaga, arXiv: 2007.12709.

  46. Y. Wang, R. K. L. Lo, A. K. Y. Li, and Y. Chen, Phys. Rev. D 103, 104055 (2021), arXiv: 2101.08264.

    Article  ADS  Google Scholar 

  47. J. Janquart, E. Seo, O. A. Hannuksela, T. G. F. Li, and C. Van Den Broeck, Astrophys. J. Lett. 923, L1 (2021), arXiv: 2110.06873.

    Article  ADS  Google Scholar 

  48. A. Vijaykumar, A. K. Mehta, and A. Ganguly, arXiv: 2202.06334.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoliang Li.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. U1931210, 11673065, and 11273061), the Science Research Grants from the China Manned Space Project (Grant No. CMS-CSST-2021-A11), the Sugon Advanced Computing Service Platform for Computing Support, the Cosmology Simulation Database (CSD) in the National Basic Science Data Center (NBSDC) and its funds the NBSDC-DB-10 (Grant No. 2020000088). Wen Zhao was supported by the National Key R&D Program of China (Grant No. 2021YFC2203100), the National Natural Science Foundation of China (Grant Nos. 11903030, and 11903033), and the Fundamental Research Funds for the Central Universities (Grant Nos. WK2030000036, and WK3440000004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, X., Li, G., Chen, X. et al. Wave effect of gravitational waves intersected with a microlens field: A new algorithm and supplementary study. Sci. China Phys. Mech. Astron. 66, 239511 (2023). https://doi.org/10.1007/s11433-022-1985-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-1985-3

Keywords

Navigation