Skip to main content
Log in

Spectrally multiplexed and bright entangled photon pairs in a lithium niobate microresonator

  • Article
  • Editor’s Focus
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

On-chip bright quantum sources with multiplexing ability are extremely high in demand for integrated quantum networks with unprecedented scalability and complexity. Here, we demonstrate a bright and broadband biphoton quantum source with spectral multiplexing generated in a lithium niobate microresonator system. Without introducing the conventional domain poling, the on-chip microdisk produces photon pairs covering a broad bandwidth promised by natural phase matching in spontaneous parametric down conversion. Experimentally, the multiplexed photon pairs are characterized by 30 nm bandwidth limited by the filtering system, providing over 40 multiplexing channels with a 0.8 nm channel spacing. Meanwhile, the generation rate reaches 5.13 MHz/µW with a coincidence-to-accidental ratio up to 804, and the quantum source manifests a high purity with a heralded single photon correlation g (2)H (0) = 0.0098 ± 0.0021. Furthermore, the energy-time entanglement is demonstrated with an excellent interference visibility of 96.5% ± 2%. Such a quantum source at the telecommunication band paves the way for high-dimensional entanglement and future integrated quantum information systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, Nat. Photon. 14, 273 (2020), arXiv: 2005.01948.

    Article  ADS  Google Scholar 

  2. L. Feng, G. Guo, and X. Ren, Adv. Quantum Tech. 3, 1900058 (2020).

    Article  Google Scholar 

  3. J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Zukowski, Rev. Mod. Phys. 84, 777 (2012), arXiv: 0805.2853.

    Article  ADS  Google Scholar 

  4. L. C. Kwek, L. Cao, W. Luo, Y. Wang, S. Sun, X. Wang, and A. Q. Liu, AAPPS Bull. 31, 15 (2021).

    Article  Google Scholar 

  5. X. Guo, C. L. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, Light Sci. Appl. 6, e16249 (2017), arXiv: 1603.03726.

    Article  Google Scholar 

  6. T. J. Steiner, J. E. Castro, L. Chang, Q. Dang, W. Xie, J. Norman, J. E. Bowers, and G. Moody, PRX Quantum 2, 010337 (2021).

    Article  Google Scholar 

  7. J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, Appl. Phys. Lett. 99, 181110 (2011), arXiv: 1108.5107.

    Article  ADS  Google Scholar 

  8. S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, Nat. Photon. 10, 727 (2016).

    Article  ADS  Google Scholar 

  9. M. Mirhosseini, A. Sipahigil, M. Kalaee, and O. Painter, Nature 588, 599 (2020).

    Article  ADS  Google Scholar 

  10. D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, and D. Englund, Phys. Rev. X 8, 021009 (2018), arXiv: 1708.00434.

    Google Scholar 

  11. H. S. Zhong, H. Wang, Y. H. Deng, M. C. Chen, L. C. Peng, Y. H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X. Y. Yang, W. J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Science 370, 1460 (2020), arXiv: 2012.01625.

    Article  ADS  Google Scholar 

  12. M. Zhang, L. T. Feng, Z. Y. Zhou, Y. Chen, H. Wu, M. Li, S. M. Gao, G. P. Guo, G. C. Guo, D. X. Dai, and X. F. Ren, Light Sci. Appl. 8, 41 (2019).

    Article  ADS  Google Scholar 

  13. D. Llewellyn, Y. Ding, I. I. Faruque, S. Paesani, D. Bacco, R. Santagati, Y. J. Qian, Y. Li, Y. F. Xiao, M. Huber, M. Malik, G. F. Sinclair, X. Zhou, K. Rottwitt, J. L. O’Brien, J. G. Rarity, Q. Gong, L. K. Oxenlowe, J. Wang, and M. G. Thompson, Nat. Phys. 16, 367 (2020).

    Article  Google Scholar 

  14. L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, Nat. Commun. 7, 11985 (2016), arXiv: 1601.06250.

    Article  ADS  Google Scholar 

  15. J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenlφwe, J. L. O’Brien, A. Laing, and M. G. Thompson, Science 360, 285 (2018), arXiv: 1803.04449.

    Article  ADS  MathSciNet  Google Scholar 

  16. L. T. Feng, M. Zhang, Z. Y. Zhou, Y. Chen, M. Li, D. X. Dai, H. L. Ren, G. P. Guo, G. C. Guo, M. Tame, and X. F. Ren, npj Quantum Inf. 5, 90 (2019), arXiv: 1812.02368.

    Article  ADS  Google Scholar 

  17. L. Li, Z. Liu, X. Ren, S. Wang, V. C. Su, M. K. Chen, C. H. Chu, H. Y. Kuo, B. Liu, W. Zang, G. Guo, L. Zhang, Z. Wang, S. Zhu, and D. P. Tsai, Science 368, 1487 (2020).

    Article  ADS  Google Scholar 

  18. X. W. Luo, X. Zhou, C. F. Li, J. S. Xu, G. C. Guo, and Z. W. Zhou, Nat. Commun. 6, 7704 (2015), arXiv: 1512.08116.

    Article  ADS  Google Scholar 

  19. M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, Nature 546, 622 (2017).

    Article  ADS  Google Scholar 

  20. X. Lu, Q. Li, D. A. Westly, G. Moille, A. Singh, V. Anant, and K. Srinivasan, Nat. Phys. 15, 373 (2019), arXiv: 1805.04011.

    Article  Google Scholar 

  21. P. Imany, J. A. Jaramillo-Villegas, O. D. Odele, K. Han, D. E. Leaird, J. M. Lukens, P. Lougovski, M. Qi, and A. M. Weiner, Opt. Express 26, 1825 (2018).

    Article  ADS  Google Scholar 

  22. A. Orieux, M. A. M. Versteegh, K. D. Jöns, and S. Ducci, Rep. Prog. Phys. 80, 076001 (2017), arXiv: 1702.08823.

    Article  ADS  Google Scholar 

  23. R. S. Weis, and T. K. Gaylord, Appl. Phys. A 37, 191 (1985).

    Article  ADS  Google Scholar 

  24. S. Saravi, T. Pertsch, and F. Setzpfandt, Adv. Opt. Mater. 9, 2100789 (2021).

    Article  Google Scholar 

  25. C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, Nature 562, 101 (2018).

    Article  ADS  Google Scholar 

  26. R. Gao, J. Guan, N. Yao, L. Deng, J. Lin, M. Wang, L. Qiao, Z. Wang, Y. Liang, Y. Zhou, and Y. Cheng, Opt. Lett. 46, 3131 (2021), arXiv: 2104.13501.

    Article  ADS  Google Scholar 

  27. L. K. Chen, and Y. F. Xiao, Sci. China-Phys. Mech. Astron. 64, 234264 (2021).

    Article  ADS  Google Scholar 

  28. L. K. Chen, and Y. F. Xiao, Sci. China-Phys. Mech. Astron. 63, 224231 (2020).

    Article  ADS  Google Scholar 

  29. Q. Luo, Z. Z. Hao, C. Yang, R. Zhang, D. H. Zheng, S. G. Liu, H. D. Liu, F. Bo, Y. F. Kong, G. Q. Zhang, and J. J. Xu, Sci. China-Phys. Mech. Astron. 64, 234263 (2021).

    Article  ADS  Google Scholar 

  30. Y. A. Liu, X. S. Yan, J. W. Wu, B. Zhu, Y. P. Chen, and X. F. Chen, Sci. China-Phys. Mech. Astron. 64, 234262 (2021), arXiv: 2009.12900.

    Article  ADS  Google Scholar 

  31. C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, and M. Lončar, Opt. Express 22, 30924 (2014), arXiv: 1410.2625.

    Article  ADS  Google Scholar 

  32. J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, Sci. Rep. 5, 8072 (2015).

    Article  ADS  Google Scholar 

  33. M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, Optica 4, 1536 (2017), arXiv: 1712.04479.

    Article  ADS  Google Scholar 

  34. J. Lin, F. Bo, Y. Cheng, and J. Xu, Photon. Res. 8, 1910 (2020).

    Article  Google Scholar 

  35. G. T. Xue, Y. F. Niu, X. Liu, J. C. Duan, W. Chen, Y. Pan, K. Jia, X. Wang, H. Y. Liu, Y. Zhang, P. Xu, G. Zhao, X. Cai, Y. X. Gong, X. Hu, Z. Xie, and S. Zhu, Phys. Rev. Appl. 15, 064059 (2021), arXiv: 2012.06092.

    Article  ADS  Google Scholar 

  36. U. A. Javid, J. Ling, J. Staffa, M. Li, Y. He, and Q. Lin, Phys. Rev. Lett. 127, 183601 (2021), arXiv: 2101.04877.

    Article  ADS  Google Scholar 

  37. Z. Ma, J. Y. Chen, Z. Li, C. Tang, Y. M. Sua, H. Fan, and Y. P. Huang, Phys. Rev. Lett. 125, 263602 (2020), arXiv: 2010.04242.

    Article  ADS  Google Scholar 

  38. R. Luo, H. Jiang, S. Rogers, H. Liang, Y. He, and Q. Lin, Opt. Express 25, 24531 (2017).

    Article  ADS  Google Scholar 

  39. K. J. Vahala, Nature 424, 839 (2003).

    Article  ADS  Google Scholar 

  40. J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, L. Qiao, W. Fang, F. Bo, and Y. Cheng, Phys. Rev. Lett. 122, 173903 (2019).

    Article  ADS  Google Scholar 

  41. J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, Phys. Rev. Appl. 6, 014002 (2016).

    Article  ADS  Google Scholar 

  42. J. Fürst, B. Sturman, K. Buse, and I. Breunig, Opt. Express 24, 20143 (2016).

    Article  ADS  Google Scholar 

  43. X. Ye, S. Liu, Y. Chen, Y. Zheng, and X. Chen, Opt. Lett. 45, 523 (2020).

    Article  ADS  Google Scholar 

  44. R. Xie, G. Li, F. Chen, and G. Long, Adv. Opt. Mater. 9, 2100539 (2021).

    Article  Google Scholar 

  45. Y. H. Li, Z. Y. Zhou, L. T. Feng, W. T. Fang, S. Liu, S. K. Liu, K. Wang, X. F. Ren, D. S. Ding, L. X. Xu, and B. S. Shi, Phys. Rev. Appl. 7, 064005 (2017), arXiv: 1612.02915.

    Article  ADS  Google Scholar 

  46. D. Aktas, B. Fedrici, F. Kaiser, T. Lunghi, L. Labonté, and S. Tanzilli, Laser Photon. Rev. 10, 451 (2016), arXiv: 1601.02402.

    Article  ADS  Google Scholar 

  47. C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, Science 351, 1176 (2016).

    Article  ADS  Google Scholar 

  48. C. Reimer, S. Sciara, P. Roztocki, M. Islam, L. Romero Cortés, Y. Zhang, B. Fischer, S. Loranger, R. Kashyap, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, W. J. Munro, J. Azaña, M. Kues, and R. Morandotti, Nat. Phys. 15, 148 (2019).

    Article  Google Scholar 

  49. R. Wu, J. Zhang, N. Yao, W. Fang, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, Opt. Lett. 43, 4116 (2018), arXiv: 1806.00099.

    Article  ADS  Google Scholar 

  50. M. Wang, R. Wu, J. Lin, J. Zhang, Z. Fang, Z. Chai, and Y. Cheng, Quantum Eng. 1, e9 (2019).

    Article  Google Scholar 

  51. Z. Yang, M. Liscidini, and J. E. Sipe, Phys. Rev. A 77, 033808 (2008).

    Article  ADS  Google Scholar 

  52. Y. X. Gong, Z. D. Xie, P. Xu, X. Q. Yu, P. Xue, and S. N. Zhu, Phys. Rev. A 84, 053825 (2011), arXiv: 1112.4551.

    Article  ADS  Google Scholar 

  53. G. Lin, J. U. Fürst, D. V. Strekalov, and N. Yu, Appl. Phys. Lett. 103, 181107 (2013).

    Article  ADS  Google Scholar 

  54. J. Wang, B. Zhu, Z. Hao, F. Bo, X. Wang, F. Gao, Y. Li, G. Zhang, and J. Xu, Opt. Express 24, 21869 (2016).

    Article  ADS  Google Scholar 

  55. X. Sun, H. Liang, R. Luo, W. C. Jiang, X. C. Zhang, and Q. Lin, Opt. Express 25, 13504 (2017).

    Article  ADS  Google Scholar 

  56. C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D. Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, Appl. Phys. Lett. 98, 051101 (2011), arXiv: 1011.1688.

    Article  ADS  Google Scholar 

  57. X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, Science 358, 344 (2017).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (Grant Nos. 2016YFA0301302, and 2016YFA0301700), National Natural Science Foundation of China (Grant Nos. 11825402, 61590932, 11774333, 62061160487, 12004373, 11734009, and 11874375), Anhui Initiative in Quantum Information Technologies (Grant No. AHY130300), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB24030601), Beijing Academy of Quantum Information Sciences (Grant No. Y18G20), and Fundamental Research Funds for the Central Universities. This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication. We thank W. Liu for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya Cheng, Yun-Feng Xiao or Xi-Feng Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, BY., Chen, LK., Lin, JT. et al. Spectrally multiplexed and bright entangled photon pairs in a lithium niobate microresonator. Sci. China Phys. Mech. Astron. 65, 294262 (2022). https://doi.org/10.1007/s11433-022-1926-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-1926-0

PACS number(s)

Navigation