Abstract
We analytically show that quantum diffusion in the coupled system composed of two identical chains exhibits a well-defined periodic oscillation in both transverse and longitudinal directions with a frequency determined by the interchain hopping strength, no matter whether the chains are periodic or non-periodic. We illustrate the result through numerical work on the coupled periodic chains and the quasiperiodic Aubry-Andre-Harper (AAH) chains with various modulations of onsite potentials supporting extended, critical, and localized states. We further numerically show that quantum diffusion in the coupled chains of different degrees of disorder W exhibits an exponential decay oscillation similar to the behavior of an underdamped harmonic oscillator, with a decay time inversely proportional to the square of W and a slight frequency change proportional to the square of W. Moreover, quantum diffusions in the coupled systems composed of two different chains are numerically studied, including periodic/disordered chains, periodic/AAH chains, and two different AAH chains, which exhibit the same behavior of under-damped periodic oscillation if the onsite potential difference between two chains is smaller than the interchain hoping strength. Existence of this universal periodic oscillation is a result of spectral splitting of the iso-spectra of two chains determined by interchain hopping, independent of system size, boundary condition, and intrachain onsite potentials. Because the oscillation frequency and spreading distance of wavepacket can be tuned separately by interchain hopping and intrachain potentials, the periodic oscillation of quantum diffusion in coupled chains is expected to find applications in control of quantum states and in designing nanoscale quantum devices.
Similar content being viewed by others
References
P. W. Anderson, Phys. Rev. 109, 1492 (1958).
N. F. Mott, Rev. Mod. Phys. 40, 677 (1968).
D. J. Thouless, Phys. Rep. 13, 95 (1974).
E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).
P. A. Lee, and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).
B. Kramer, and A. MacKinnon, Rep. Prog. Phys. 56, 1469 (1993).
P. G. Harper, Proc. R. Soc. London Ser. A 68, 874 (1955).
M. Y. Azbell, Soc. Phys.-JETP 19, 634 (1964)
M. Y. Azbell, Phys. Rev. Lett. 43, 1954 (1979).
D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).
S. Aubry, and G. André, Ann. Israel Phys. Soc. 3, 133 (1980).
J. Bellissard, D. Bessis, and P. Moussa, Phys. Rev. Lett. 49, 701 (1982).
M. Kohmoto, L. P. Kadanoff, and C. Tang, Phys. Rev. Lett. 50, 1870 (1983).
S. Ostlund, R. Pandit, D. Rand, H. J. Schellnhuber, and E. D. Siggia, Phys. Rev. Lett. 50, 1873 (1983).
Q. Niu, and F. Nori, Phys. Rev. Lett. 57, 2057 (1986)
Q. Niu, and F. Nori, Phys. Rev. B 42, 10329 (1990).
S. Das Sarma, S. He, and X. C. Xie, Phys. Rev. Lett. 61, 2144 (1988).
X. Li, X. Li, and S. Das Sarma, Phys. Rev. B 96, 085119 (2017).
X. Li, and S. Das Sarma, Phys. Rev. B 101, 064203 (2020).
H. Yao, H. Khoudli, L. Bresque, and L. Sanchez-Palencia, Phys. Rev. Lett. 123, 070405 (2019).
S. Ganeshan, J. H. Pixley, and S. Das Sarma, Phys. Rev. Lett. 114, 146601 (2015).
X. Deng, S. Ray, S. Sinha, G. V. Shlyapnikov, and L. Santos, Phys. Rev. Lett. 123, 025301 (2019).
J. Biddle, J. D. J. Priour Jr., B. Wang, and S. Das Sarma, Phys. Rev. B 83, 075105 (2011).
J. Biddle, and S. Das Sarma, Phys. Rev. Lett. 104, 070601 (2010).
J. Zhong, and G. M. Stocks, Nano Lett. 6, 128 (2006).
J. X. Zhong, and G. Malcolm Stocks, Phys. Rev. B 75, 033410 (2007).
W. Zhang, R. Yang, Y. Zhao, S. Duan, P. Zhang, and S. E. Ulloa, Phys. Rev. B 81, 214202 (2010).
T. Mitra, and P. K. Thakur, Phys. Rev. B 53, 9895 (1996).
T. Sedrakyan, and A. Ossipov, Phys. Rev. B 70, 214206 (2004).
D. S. Hu, C. P. Zhu, and Y. M. Zhang, Chin. Phys. B 20, 017104 (2011).
S. J. Xiong, and S. N. Evangelou, Phys. Rev. B 64, 113107 (2001).
A. M. Guo, and S. J. Xiong, Phys. Rev. B 83, 245108 (2011).
F. A. B. F. de Moura, R. A. Caetano, and M. L. Lyra, Phys. Rev. B 81, 125104 (2010).
S. Sil, S. K. Maiti, and A. Chakrabarti, Phys. Rev. Lett. 101, 076803 (2008).
A. M. Guo, X. C. Xie, and Q. Sun, Phys. Rev. B 89, 075434 (2014).
M. Rossignolo, and L. Dell’Anna, Phys. Rev. B 99, 054211 (2019).
R. Wang, X. M. Yang, and Z. Song, arXiv: 1912.04506v1.
M. P. van Albada, and A. Lagendijk, Phys. Rev. Lett. 55, 2692 (1985).
D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, Nature 390, 671 (1997).
F. Scheffold, R. Lenke, R. Tweer, and G. Maret, Nature 398, 206 (1999).
M. Störzer, P. Gross, C. M. Aegerter, and G. Maret, Phys. Rev. Lett. 96, 063904 (2006).
T. Schwartz, G. Bartal, S. Fishman, and M. Segev, Nature 446, 52 (2007).
Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, Phys. Rev. Lett. 100, 013906 (2008).
R. Dalichaouch, J. P. Armstrong, S. Schultz, P. M. Platzman, and S. L. McCall, Nature 354, 53 (1991).
A. A. Chabanov, M. Stoytchev, and A. Z. Genack, Nature 404, 850 (2000).
R. L. Weaver, Wave Motion 12, 129 (1990).
J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, Nature 453, 891 (2008).
G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, and M. Inguscio, Nature 453, 895 (2008).
M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H. Fischer, R. Vosk, E. Altman, U. Schneider, and I. Bloch, Science 349, 842 (2015).
H. P. Lüschen, S. Scherg, T. Kohlert, M. Schreiber, P. Bordia, X. Li, S. Das Sarma, and I. Bloch, Phys. Rev. Lett. 120, 160404 (2018).
F. A. An, E. J. Meier, and B. Gadway, Phys. Rev. X 8, 031045 (2018).
T. Kohlert, S. Scherg, X. Li, H. P. Lüschen, S. Das Sarma, I. Bloch, and M. Aidelsburger, Phys. Rev. Lett. 122, 170403 (2019).
F. A. An, K. Padavić, E. J. Meier, S. Hegde, S. Ganeshan, J. H. Pixley, S. Vishveshwara, and B. Gadway, Phys. Rev. Lett. 126, 040603 (2021).
P. Bordia, H. P. Lüschen, S. S. Hodgman, M. Schreiber, I. Bloch, and U. Schneider, Phys. Rev. Lett. 116, 140401 (2016).
B. Huckestein, and L. Schweitzer, Phys. Rev. Lett. 72, 713 (1994).
T. Kawarabayashi, and T. Ohtsuki, Phys. Rev. B 53, 6975 (1996).
T. Terao, Phys. Rev. B 56, 975 (1997).
T. Ohtsuki, and T. Kawarabayashi, J. Phys. Soc. Jpn. 66, 314 (1996).
H. Hiramoto, and S. Abe, J. Phys. Soc. Jpn. 57, 230 (1988).
R. Ketzmerick, K. Kruse, S. Kraut, and T. Geisel, Phys. Rev. Lett. 79, 1959 (1997).
H. Hiramoto, and S. Abe, J. Phys. Soc. Jpn. 57, 1365 (1988).
S. N. Evangelou, and D. E. Katsanos, J. Phys. A-Math. Gen. 26, L1243 (1993).
M. Wilkinson, and E. J. Austin, Phys. Rev. B 50, 1420 (1994).
R. Ketzmerick, G. Petschel, and T. Geisel, Phys. Rev. Lett. 69, 695 (1992).
J. X. Zhong, and R. Mosseri, J. Phys.-Condens. Matter 7, 8383 (1995).
T. Geisel, R. Ketzmerick, and G. Petschel, Phys. Rev. Lett. 66, 1651 (1991).
I. Guarneri, Europhys. Lett. 21, 729 (1993).
F. Piéchon, Phys. Rev. Lett. 76, 4372 (1996).
J. Zhong, R. B. Diener, D. A. Steck, W. H. Oskay, M. G. Raizen, E. W. Plummer, Z. Zhang, and Q. Niu, Phys. Rev. Lett. 86, 2485 (2001).
Y. Ye, Z. Y. Ge, Y. Wu, S. Wang, M. Gong, Y. R. Zhang, Q. Zhu, R. Yang, S. Li, F. Liang, J. Lin, Y. Xu, C. Guo, L. Sun, C. Cheng, N. Ma, Z. Y. Meng, H. Deng, H. Rong, C. Y. Lu, C. Z. Peng, H. Fan, X. Zhu, and J. W. Pan, Phys. Rev. Lett. 123, 050502 (2019).
W. Ye, Z. Yin, and Y. Guo, arXiv: 2101.0803v1.
E. Orignac, and T. Giamarchi, Phys. Rev. B 64, 144515 (2001).
M. Atala, M. Aidelsburger, M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch, Nat. Phys. 10, 588 (2014).
L. J. Lang, X. Cai, and S. Chen, Phys. Rev. Lett. 108, 220401 (2012).
H. T. Cui, H. Z. Shen, M. Qin, and X. X. Yi, Phys. Rev. A 102, 032209 (2020).
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by the National Natural Science Foundation of China (Grant Nos. 11874316, and 11474244), the National Basic Research Program of China (Grant No. 2015CB921103), the Innovative Research Team in University (Grant No. IRT 17R91), and the International Visiting Faculty Program of Hunan Provincial Government, China.
Rights and permissions
About this article
Cite this article
Jiang, J., Lu, Y., Wang, C. et al. Periodic oscillation of quantum diffusion in coupled one-dimensional systems. Sci. China Phys. Mech. Astron. 65, 247211 (2022). https://doi.org/10.1007/s11433-021-1822-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11433-021-1822-9