Skip to main content
Log in

Surface morphology and electronic structure in stoichiometric superconductor CaKFe4As4 probed by scanning tunneling microscopy/spectroscopy

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

CaKFe4As4 is a new-type superconductor with a relatively high transition temperature of 35 K among stoichiometric iron-based superconductors. Based on scanning tunneling microscopy/spectroscopy, the surface morphology and electronic structure of CaKFe4As4 single crystal were systematically investigated. The cleaved CaKFe4As4 showed various morphologies, such as atomically resolved 1×1, 1×2, and \(\sqrt 2 \times \sqrt 2 \) lattices. By analyzing the geometrical correlations of these morphologies, the 1×1 and 1×2 lattices were identified as the original and reconstructed As layers, respectively, whereas the \(\sqrt 2 \times \sqrt 2 \) lattice was distinguished as the reconstructed alkaline-earth-metal or alkali-metal layer. The superconducting energy gap of 7.3 meV and bosonic mode of 12.7 meV were resolved in the scanning tunneling spectra. In addition, the superconducting energy gaps measured on different terminations were identical and consistent with the values obtained by bulk-sensitive techniques, indicating that the electronic structures of CaKFe4As4 were insensitive to the surface reconstructions. Our study clarifies the relationships between complex surface reconstructions and surface terminations and preliminarily presents that there is no obvious effect of surface reconstructions on electronic states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ø. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and C. Renner, Rev. Mod. Phys. 79, 353 (2007), arXiv: cond-mat/0610672.

    Article  ADS  Google Scholar 

  2. C. L. Song, and J. E. Hoffman, Curr. Opin. Solid State Mater. Sci. 17, 39 (2013), arXiv: 1212.5164.

    Article  ADS  Google Scholar 

  3. A. Yazdani, E. H. da Silva Neto, and P. Aynajian, Annu. Rev. Condens. Matter Phys. 7, 11 (2016).

    Article  ADS  Google Scholar 

  4. H. Y. Xue, H. Yang, Y. F. Wu, G. Yao, D. D. Guan, S. Y. Wang, H. Zheng, C. H. Liu, Y. Y. Li, and J. F. Jia, Sci. China-Phys. Mech. Astron. 62, 76801 (2019).

    Article  ADS  Google Scholar 

  5. Y. Fei, Y. Zheng, K. L. Bu, W. H. Zhang, Y. Ding, X. J. Zhou, and Y. Yin, Sci. China-Phys. Mech. Astron. 63, 227411 (2020).

    Article  ADS  Google Scholar 

  6. C. L. Song, Y. Yin, M. Zech, T. Williams, M. M. Yee, G. F. Chen, J. L. Luo, N. L. Wang, E. W. Hudson, and J. E. Hoffman, Phys. Rev. B 87, 214519 (2013), arXiv: 1212.3240.

    Article  ADS  Google Scholar 

  7. A. Li, J. X. Yin, J. Wang, Z. Wu, J. Ma, A. S. Sefat, B. C. Sales, D. G. Mandrus, M. A. McGuire, R. Jin, C. Zhang, P. Dai, B. Lv, C. W. Chu, X. Liang, P. H. Hor, C. S. Ting, and S. H. Pan, Phys. Rev. B 99, 134520 (2019).

    Article  ADS  Google Scholar 

  8. J. X. Yin, X. X. Wu, J. Li, Z. Wu, J. H. Wang, C. S. Ting, P. H. Hor, X. J. Liang, C. L. Zhang, P. C. Dai, X. C. Wang, C. Q. Jin, G. F. Chen, J. P. Hu, Z. Q. Wang, A. Li, H. Ding, and S. H. Pan, Phys. Rev. B 102, 054515 (2020).

    Article  ADS  Google Scholar 

  9. S. Misra, S. Oh, D. J. Hornbaker, T. DiLuccio, J. N. Eckstein, and A. Yazdani, Phys. Rev. Lett. 89, 087002 (2002), arXiv: cond-mat/0208053.

    Article  ADS  Google Scholar 

  10. Y. Zhong, Y. Wang, S. Han, Y. F. Lv, W. L. Wang, D. Zhang, H. Ding, Y. M. Zhang, L. Wang, K. He, R. Zhong, J. A. Schneeloch, G. D. Gu, C. L. Song, X. C. Ma, and Q. K. Xue, Sci. Bull. 61, 1239 (2016), arXiv: 1607.01852.

    Article  Google Scholar 

  11. J. E. Hoffman, Rep. Prog. Phys. 74, 124513 (2011), arXiv: 1201.1380.

    Article  ADS  Google Scholar 

  12. V. B. Nascimento, A. Li, D. R. Jayasundara, Y. Xuan, J. O’Neal, S. Pan, T. Y. Chien, B. Hu, X. B. He, G. Li, A. S. Sefat, M. A. McGuire, B. C. Sales, D. Mandrus, M. H. Pan, J. Zhang, R. Jin, and E. W. Plummer, Phys. Rev. Lett. 103, 076104 (2009), arXiv: 0905.3194.

    Article  ADS  Google Scholar 

  13. T. Nishizaki, Y. Nakajima, T. Tamegai, and N. Kobayashi, J. Phys. Soc. Jpn. 80, 014710 (2011).

    Article  ADS  Google Scholar 

  14. I. Zeljkovic, D. Huang, C. L. Song, B. Lv, C. W. Chu, and J. E. Hoffman, Phys. Rev. B 87, 201108 (2013), arXiv: 1301.4942.

    Article  ADS  Google Scholar 

  15. T. M. Chuang, M. P. Allan, J. Lee, Y. Xie, N. Ni, S. L. Bud’ko, G. S. Boebinger, P. C. Canfield, and J. C. Davis, Science 327, 181 (2010).

    Article  ADS  Google Scholar 

  16. X. Liu, R. Tao, M. Q. Ren, W. Chen, Q. Yao, T. Wolf, Y. J. Yan, T. Zhang, and D. L. Feng, Nat. Commun. 10, 1039 (2019).

    Article  ADS  Google Scholar 

  17. G. Li, L. Liang, Q. Li, M. Pan, V. B. Nascimento, X. He, A. B. Karki, V. Meunier, R. Jin, J. Zhang, and E. W. Plummer, Phys. Rev. Lett. 112, 077205 (2014).

    Article  ADS  Google Scholar 

  18. F. Massee, S. de Jong, Y. Huang, J. Kaas, E. van Heumen, J. B. Goedkoop, and M. S. Golden, Phys. Rev. B 80, 140507 (2009).

    Article  ADS  Google Scholar 

  19. E. van Heumen, J. Vuorinen, K. Koepernik, F. Massee, Y. Huang, M. Shi, J. Klei, J. Goedkoop, M. Lindroos, J. van den Brink, and M. S. Golden, Phys. Rev. Lett. 106, 027002 (2011), arXiv: 1009.3493.

    Article  ADS  Google Scholar 

  20. H. Zhang, J. Dai, Y. Zhang, D. Qu, H. Ji, G. Wu, X. F. Wang, X. H. Chen, B. Wang, C. Zeng, J. Yang, and J. G. Hou, Phys. Rev. B 81, 104520 (2010), arXiv: 0908.1710.

    Article  ADS  Google Scholar 

  21. A. Iyo, K. Kawashima, T. Kinjo, T. Nishio, S. Ishida, H. Fujihisa, Y. Gotoh, K. Kihou, H. Eisaki, and Y. Yoshida, J. Am. Chem. Soc. 138, 3410 (2016).

    Article  Google Scholar 

  22. W. R. Meier, T. Kong, S. L. Bud’ko, and P. C. Canfield, Phys. Rev. Mater. 1, 013401 (2017), arXiv: 1704.09025.

    Article  Google Scholar 

  23. M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008), arXiv: 0805.4630.

    Article  ADS  Google Scholar 

  24. K. Sasmal, B. Lv, B. Lorenz, A. M. Guloy, F. Chen, Y. Y. Xue, and C. W. Chu, Phys. Rev. Lett. 101, 107007 (2008).

    Article  ADS  Google Scholar 

  25. A. S. Sefat, R. Jin, M. A. McGuire, B. C. Sales, D. J. Singh, and D. Mandrus, Phys. Rev. Lett. 101, 117004 (2008), arXiv: 0807.2237.

    Article  ADS  Google Scholar 

  26. L. J. Li, Y. K. Luo, Q. B. Wang, H. Chen, Z. Ren, Q. Tao, Y. K. Li, X. Lin, M. He, Z. W. Zhu, G. H. Cao, and Z. A. Xu, New J. Phys. 11, 025008 (2009), arXiv: 0809.2009.

    Article  ADS  Google Scholar 

  27. A. Bhattacharyya, D. T. Adroja, M. Smidman, and V. K. Anand, Sci. China-Phys. Mech. Astron. 61, 127402 (2018), arXiv: 1811.12677.

    Article  ADS  Google Scholar 

  28. F. Massee, Y. Huang, R. Huisman, S. de Jong, J. B. Goedkoop, and M. S. Golden, Phys. Rev. B 79, 220517 (2009), arXiv: 0812.4539.

    Article  ADS  Google Scholar 

  29. K. Cho, A. Fente, S. Teknowijoyo, M. A. Tanatar, K. R. Joshi, N. M. Nusran, T. Kong, W. R. Meier, U. Kaluarachchi, I. Guillamón, H. Suderow, S. L. Bud’ko, P. C. Canfield, and R. Prozorov, Phys. Rev. B 95, 100502 (2017), arXiv: 1606.06245.

    Article  ADS  Google Scholar 

  30. W. L. Zhang, W. R. Meier, T. Kong, P. C. Canfield, and G. Blumberg, Phys. Rev. B 98, 140501 (2018), arXiv: 1804.06963.

    Article  ADS  Google Scholar 

  31. P. K. Biswas, A. Iyo, Y. Yoshida, H. Eisaki, K. Kawashima, and A. D. Hillier, Phys. Rev. B 95, 140505 (2017), arXiv: 1704.07578.

    Article  ADS  Google Scholar 

  32. D. Torsello, K. Cho, K. R. Joshi, S. Ghimire, G. A. Ummarino, N. M. Nusran, M. A. Tanatar, W. R. Meier, M. Xu, S. L. Bud’ko, P. C. Canfield, G. Ghigo, and R. Prozorov, Phys. Rev. B 100, 094513 (2019), arXiv: 1909.04734.

    Article  ADS  Google Scholar 

  33. R. Yang, Y. Dai, B. Xu, W. Zhang, Z. Qiu, Q. Sui, C. C. Homes, and X. Qiu, Phys. Rev. B 95, 140501 (2017).

    Article  Google Scholar 

  34. T. Xie, Y. Wei, D. Gong, T. Fennell, U. Stuhr, R. Kajimoto, K. Ikeuchi, S. Li, J. Hu, and H. Luo, Phys. Rev. Lett. 120, 267003 (2018), arXiv: 1802.01901.

    Article  ADS  Google Scholar 

  35. G. He, Z. Wei, Z. Feng, X. Yu, B. Zhu, L. Liu, K. Jin, J. Yuan, and Q. Huan, Rev. Sci. Instrum. 91, 013904 (2020), arXiv: 2003.11296.

    Article  ADS  Google Scholar 

  36. M. Gao, F. Ma, Z. Y. Lu, and T. Xiang, Phys. Rev. B 81, 193409 (2010).

    Article  ADS  Google Scholar 

  37. D. Hsieh, Y. Xia, L. Wray, D. Qian, K. Gomes, A. Yazdani, G. F. Chen, J. L. Luo, N. L. Wang, and M. Z. Hasan, arXiv: 0812.2289.

  38. L. Cao, Y. Song, Y. B. Liu, Q. Zheng, G. Y. Han, W. Y. Liu, M. Li, H. Chen, Y. Q. Xing, G. H. Cao, H. Ding, X. Lin, S. X. Du, Y. Y. Zhang, G. Li, Z. Q. Wang, and H. J. Gao, Nano Res. 14, 3921 (2021).

    Article  ADS  Google Scholar 

  39. G. Li, X. He, J. Zhang, R. Jin, A. S. Sefat, M. A. McGuire, D. G. Mandrus, B. C. Sales, and E. W. Plummer, Phys. Rev. B 86, 060512 (2012), arXiv: 1006.5907.

    Article  ADS  Google Scholar 

  40. F. C. Niestemski, V. B. Nascimento, B. Hu, W. Plummer, J. Gillett, S. Sebastian, Z. Wang, and V. Madhavan, arXiv: 0906.2761.

  41. D. Mou, T. Kong, W. R. Meier, F. Lochner, L. L. Wang, Q. Lin, Y. Wu, S. L. Bud’ko, I. Eremin, D. D. Johnson, P. C. Canfield, and A. Kaminski, Phys. Rev. Lett. 117, 277001 (2016), arXiv: 1606.05643.

    Article  Google Scholar 

  42. A. Fente, W. R. Meier, T. Kong, V. G. Kogan, S. L. Bud’ko, P. C. Canfield, I. Guillamón, and H. Suderow, Phys. Rev. B 97, 134501 (2018).

    Article  ADS  Google Scholar 

  43. Z. Wang, H. Yang, D. Fang, B. Shen, Q. H. Wang, L. Shan, C. Zhang, P. Dai, and H. H. Wen, Nat. Phys. 9, 42 (2012), arXiv: 1310.8160.

    Article  Google Scholar 

  44. S. Chi, R. Aluru, S. Grothe, A. Kreisel, U. R. Singh, B. M. Andersen, W. N. Hardy, R. Liang, D. A. Bonn, S. A. Burke, and P. Wahl, Nat. Commun. 8, 15996 (2017), arXiv: 1703.07002.

    Article  ADS  Google Scholar 

  45. C. Chen, C. Liu, Y. Liu, and J. Wang, Nano Lett. 20, 2056 (2020).

    Article  ADS  Google Scholar 

  46. K. Iida, M. Ishikado, Y. Nagai, H. Yoshida, A. D. Christianson, N. Murai, K. Kawashima, Y. Yoshida, H. Eisaki, and A. Iyo, J. Phys. Soc. Jpn. 86, 093703 (2017), arXiv: 1708.01006.

    Article  ADS  Google Scholar 

  47. L. Shan, J. Gong, Y. L. Wang, B. Shen, X. Hou, C. Ren, C. Li, H. Yang, H. H. Wen, S. Li, and P. Dai, Phys. Rev. Lett. 108, 227002 (2012).

    Article  ADS  Google Scholar 

  48. A. V. Balatsky, I. Vekhter, and J. X. Zhu, Rev. Mod. Phys. 78, 373 (2006).

    Article  ADS  Google Scholar 

  49. X. Chen, W. Duan, X. Fan, W. Hong, K. Chen, H. Yang, S. Li, H. Luo, and H. H. Wen, Phys. Rev. Lett. 126, 257002 (2021), arXiv: 2102.12150.

    Article  ADS  Google Scholar 

  50. W. Duan, K. Chen, W. Hong, X. Chen, H. Yang, S. Li, H. Luo, and H. H. Wen, Phys. Rev. B 103, 214518 (2021), arXiv: 2102.08785.

    Article  ADS  Google Scholar 

  51. M. Bristow, W. Knafo, P. Reiss, W. Meier, P. C. Canfield, S. J. Blundell, and A. I. Coldea, Phys. Rev. B 101, 134502 (2020), arXiv: 2003.02888.

    Article  ADS  Google Scholar 

  52. S. R. Saha, N. P. Butch, T. Drye, J. Magill, S. Ziemak, K. Kirshenbaum, P. Y. Zavalij, J. W. Lynn, and J. Paglione, Phys. Rev. B 85, 024525 (2012), arXiv: 1105.4798.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongxu Wei.

Additional information

This work was supported by the National Key Basic Research Program of China (Grant Nos. 2017YFA0302902, 2016YFA0300301, 2017YFA0303003, and 2018YFB0704102), the National Natural Science Foundation of China (Grant Nos. 11927808, 11834016, 118115301, 119611410, 11961141008, 11822411, and 11961160699), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant Nos. QYZDBSSW-SLH008, and QYZDY-SSW-SLH001), the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant Nos. XDB25000000, and XDB33000000), the Beijing Natural Science Foundation (Grant Nos. Z190008, and JQ19002), the Key-Area Research and Development Program of Guangdong Province (Grant No. 2020B0101340002), and the CAS Interdisciplinary Innovation Team. H. Luo is grateful for the support from the Youth Innovation Promotion Association of CAS (Grant No. Y202001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Wei, Z., Zhao, Z. et al. Surface morphology and electronic structure in stoichiometric superconductor CaKFe4As4 probed by scanning tunneling microscopy/spectroscopy. Sci. China Phys. Mech. Astron. 64, 127411 (2021). https://doi.org/10.1007/s11433-021-1804-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1804-7

Keywords

PACS number(s)

Navigation