Skip to main content
Log in

Non-Hermitian topological coupler for elastic waves

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Non-Hermitian topological systems, by combining the advantages of topological robustness and sensitivity induced by non-Hermiticity, have recently emerged and attracted much research interest. Here, we propose a device based on the topological coupler in elastic waves with non-Hermiticity, which contains two topological domain walls and four ports. In this device, topological robustness routes the transmission of waves, while non-Hermiticity controls the gain or loss of waves as they propagate. These mechanisms result in continuous and quantitative control of the energy distribution ratio of each port. A non-Hermitian Hamiltonian is introduced to reveal the coupling mechanism of the topological coupler, and a scattering matrix is proposed to predict the energy distribution ratio of each port. The proposed topological coupler, which provides a new paradigm for the non-Hermitian topological systems, can be employed as a sensitive beam splitter or a coupler switch. Moreover, the topological coupler has potential applications in information processing and logic operation in elastic circuits or networks, and the paradigm also applies to other classical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. von Klitzing, Rev. Mod. Phys. 58, 519 (1986).

    Article  ADS  Google Scholar 

  2. M. Z. Hasan, and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010), arXiv: 1002.3895.

    Article  ADS  Google Scholar 

  3. X. L. Qi, and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011), arXiv: 1008.2026.

    Article  ADS  Google Scholar 

  4. S. N. Kempkes, M. R. Slot, J. J. van den Broeke, P. Capiod, W. A. Benalcazar, D. Vanmaekelbergh, D. Bercioux, I. Swart, and C. Morais Smith, Nat. Mater. 18, 1292 (2019), arXiv: 1905.06053.

    Article  ADS  Google Scholar 

  5. Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić, Nature 461, 772 (2009).

    Article  ADS  Google Scholar 

  6. S. A. Skirlo, L. Lu, and M. Soljačić, Phys. Rev. Lett. 113, 113904 (2014).

    Article  ADS  Google Scholar 

  7. F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).

    Article  ADS  Google Scholar 

  8. F. D. M. Haldane, and S. Raghu, Phys. Rev. Lett. 100, 013904 (2008), arXiv: cond-mat/0503588.

    Article  ADS  Google Scholar 

  9. M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor, Nat. Photon. 7, 1001 (2013), arXiv: 1302.2153.

    Article  ADS  Google Scholar 

  10. Z. Yang, F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and B. Zhang, Phys. Rev. Lett. 114, 114301 (2015), arXiv: 1411.7100.

    Article  ADS  Google Scholar 

  11. Z. Yang, and B. Zhang, Phys. Rev. Lett. 117, 224301 (2016), arXiv: 1601.07966.

    Article  ADS  Google Scholar 

  12. Y. G. Peng, C. Z. Qin, D. G. Zhao, Y. X. Shen, X. Y. Xu, M. Bao, H. Jia, and X. F. Zhu, Nat. Commun. 7, 13368 (2016), arXiv: 1508.06243.

    Article  ADS  Google Scholar 

  13. Y. Ding, Y. Peng, Y. Zhu, X. Fan, J. Yang, B. Liang, X. Zhu, X. Wan, and J. Cheng, Phys. Rev. Lett. 122, 014302 (2019).

    Article  ADS  Google Scholar 

  14. X. Zhang, Z. K. Lin, H. X. Wang, Z. Xiong, Y. Tian, M. H. Lu, Y. F. Chen, and J. H. Jiang, Nat. Commun. 11, 65 (2020), arXiv: 1811.05514.

    Article  ADS  Google Scholar 

  15. Z. Yang, F. Gao, and B. Zhang, Sci. Rep. 6, 29202 (2016), arXiv: 1504.02655.

    Article  ADS  Google Scholar 

  16. M. Yan, J. Lu, F. Li, W. Deng, X. Huang, J. Ma, and Z. Liu, Nat. Mater. 17, 993 (2018).

    Article  ADS  Google Scholar 

  17. S. Y. Yu, C. He, Z. Wang, F. K. Liu, X. C. Sun, Z. Li, H. Z. Lu, M. H. Lu, X. P. Liu, and Y. F. Chen, Nat. Commun. 9, 3072 (2018).

    Article  ADS  Google Scholar 

  18. S. Li, D. Zhao, H. Niu, X. Zhu, and J. Zang, Nat. Commun. 9, 1370 (2018).

    Article  ADS  Google Scholar 

  19. P. Wang, L. Lu, and K. Bertoldi, Phys. Rev. Lett. 115, 104302 (2015), arXiv: 1504.01374.

    Article  ADS  Google Scholar 

  20. S. H. Mousavi, A. B. Khanikaev, and Z. Wang, Nat. Commun. 6, 9682 (2015), arXiv: 1507.03002.

    Article  Google Scholar 

  21. C. Brendel, V. Peano, O. Painter, and F. Marquardt, Phys. Rev. B 97, 020102 (2018).

    Article  ADS  Google Scholar 

  22. W. Song, W. Sun, C. Chen, Q. Song, S. Xiao, S. Zhu, and T. Li, Laser Photon. Rev. 14, 1900193 (2020).

    Article  ADS  Google Scholar 

  23. W. Wang, Y. Jin, W. Wang, B. Bonello, B. Djafari-Rouhani, and R. Fleury, Phys. Rev. B 101, 024101 (2020).

    Article  ADS  Google Scholar 

  24. Z. Q. Yang, Z. K. Shao, H. Z. Chen, X. R. Mao, and R. M. Ma, Phys. Rev. Lett. 125, 013903 (2020).

    Article  ADS  Google Scholar 

  25. X. Wu, Y. Meng, J. Tian, Y. Huang, H. Xiang, D. Han, and W. Wen, Nat. Commun. 8, 1304 (2017), arXiv: 1703.04570.

    Article  ADS  Google Scholar 

  26. X. S. Wang, H. W. Zhang, and X. R. Wang, Phys. Rev. Appl. 9, 024029 (2018).

    Article  ADS  Google Scholar 

  27. K. Ding, G. Ma, M. Xiao, Z. Q. Zhang, and C. T. Chan, Phys. Rev. X 6, 021007 (2016), arXiv: 1509.06886.

    Google Scholar 

  28. K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, Phys. Rev. Lett. 100, 103904 (2008).

    Article  ADS  Google Scholar 

  29. R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, Nat. Phys. 14, 11 (2018).

    Article  Google Scholar 

  30. H. Zhao, X. Qiao, T. Wu, B. Midya, S. Longhi, and L. Feng, Science 365, 1163 (2019).

    Article  ADS  Google Scholar 

  31. X. Zhu, H. Ramezani, C. Shi, J. Zhu, and X. Zhang, Phys. Rev. X 4, 031042 (2014).

    Google Scholar 

  32. R. Fleury, D. Sounas, and A. Alù, Nat. Commun. 6, 5905 (2015).

    Article  ADS  Google Scholar 

  33. D. Zhou, and J. Zhang, Phys. Rev. Res. 2, 023173 (2020), arXiv: 1912.09631.

    Article  Google Scholar 

  34. M. A. Miri, and A. Alù, Science 363, eaar7709 (2019).

    Article  Google Scholar 

  35. Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, Phys. Rev. Lett. 106, 213901 (2011), arXiv: 1108.2493.

    Article  ADS  Google Scholar 

  36. H. Xu, D. Mason, L. Jiang, and J. G. E. Harris, Nature 537, 80 (2016), arXiv: 1602.06881.

    Article  ADS  Google Scholar 

  37. L. Feng, Z. J. Wong, R. M. Ma, Y. Wang, and X. Zhang, Science 346, 972 (2014).

    Article  ADS  Google Scholar 

  38. B. Peng, S. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, Science 346, 328 (2014), arXiv: 1410.7474.

    Article  ADS  Google Scholar 

  39. Y. Y. Chen, G. L. Huang, and C. T. Sun, J. Vib. Acoust. 136, 061008 (2014).

    Article  Google Scholar 

  40. X. Li, Y. Chen, R. Zhu, and G. Huang, Mech. Syst. Signal Proc. 149, 107324 (2021).

    Article  Google Scholar 

  41. Y. Liu, Z. Liang, J. Zhu, L. Xia, O. Mondain-Monval, T. Brunet, A. Alù, and J. Li, Phys. Rev. X 9, 011040 (2019), arXiv: 1807.02285.

    Google Scholar 

  42. S. Weimann, M. Kremer, Y. Plotnik, Y. Lumer, S. Nolte, K. G. Makris, M. Segev, M. C. Rechtsman, and A. Szameit, Nat. Mater. 16, 433 (2017).

    Article  ADS  Google Scholar 

  43. M. Rosendo López, Z. Zhang, D. Torrent, and J. Christensen, Commun. Phys. 2, 132 (2019).

    Article  Google Scholar 

  44. H. Gao, H. Xue, Z. Gu, T. Liu, J. Zhu, and B. Zhang, Nat. Commun. 12, 1888 (2021), arXiv: 2007.01041.

    Article  ADS  Google Scholar 

  45. A. Ghatak, M. Brandenbourger, J. van Wezel, and C. Coulais, Proc. Natl. Acad. Sci. USA 117, 29561 (2020), arXiv: 1907.11619.

    Article  ADS  Google Scholar 

  46. M. I. N. Rosa, and M. Ruzzene, New J. Phys. 22, 053004 (2020), arXiv: 2001.01817.

    Article  ADS  MathSciNet  Google Scholar 

  47. H. Zhou, C. Peng, Y. Yoon, C. W. Hsu, K. A. Nelson, L. Fu, J. D. Joannopoulos, M. Soljačić, and B. Zhen, Science 359, 1009 (2018), arXiv: 1709.03044.

    Article  ADS  MathSciNet  Google Scholar 

  48. Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, and M. Ueda, Phys. Rev. X 8, 031079 (2018), arXiv: 1802.07964.

    Google Scholar 

  49. N. Okuma, K. Kawabata, K. Shiozaki, and M. Sato, Phys. Rev. Lett. 124, 086801 (2020), arXiv: 1910.02878.

    Article  ADS  MathSciNet  Google Scholar 

  50. W. Zhu, X. Fang, D. Li, Y. Sun, Y. Li, Y. Jing, and H. Chen, Phys. Rev. Lett. 121, 124501 (2018), arXiv: 1803.04110.

    Article  ADS  Google Scholar 

  51. W. Tang, X. Jiang, K. Ding, Y. X. Xiao, Z. Q. Zhang, C. T. Chan, and G. Ma, Science 370, 1077 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  52. X. Wu, Y. Meng, Y. Hao, R. Y. Zhang, J. Li, and X. Zhang, Phys. Rev. Lett. 126, 226802 (2021).

    Article  ADS  Google Scholar 

  53. L. H. Wu, and X. Hu, Phys. Rev. Lett. 114, 223901 (2015).

    Article  ADS  Google Scholar 

  54. Y. Yang, Y. F. Xu, T. Xu, H. X. Wang, J. H. Jiang, X. Hu, and Z. H. Hang, Phys. Rev. Lett. 120, 217401 (2018).

    Article  ADS  Google Scholar 

  55. B. Zhou, H. Z. Lu, R. L. Chu, S. Q. Shen, and Q. Niu, Phys. Rev. Lett. 101, 246807 (2008), arXiv: 0806.4810.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Zhang or Jensen Li.

Additional information

This work was supported by the Research Grants Council of Hong Kong (Grant Nos. 16302218, and C6013-18G), and the Croucher Foundation. Z. Liang acknowledges the financial support by the National Natural Science Foundation of China (Grant Nos. 11574216, and 61505114).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., Wu, X., Shen, Y. et al. Non-Hermitian topological coupler for elastic waves. Sci. China Phys. Mech. Astron. 65, 224611 (2022). https://doi.org/10.1007/s11433-021-1785-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1785-y

Keywords

Navigation