Skip to main content
Log in

Facile synthesis of two-dimensional MoS2/WS2 lateral heterostructures with controllable core/shell size ratio by a one-step chemical vapor deposition method

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Heterostructures based on two-dimensional (2D) transition-metal dichalcogenides (TMDCs) possess unique electronic and optical properties, which open up unprecedented opportunities in nanoscale optoelectronic devices. Synthesizing high-quality 2D TMDC heterostructures with different core/shell size ratios is of great significance for practical applications. Here, we report a simple one-step chemical vapor deposition (CVD) method for fabricating MoS2/WS2 lateral heterostructures with controllable core/shell size ratio. An ultrathin MoO3/WO3 film prepared by thermal evaporation was used as the precursor, and a step-like heating process was adopted to separately grow MoS2 and WS2 monolayers by taking advantage of the different melting points of MoO3 and WO3 sources. High-quality MoS2/WS2 lateral heterostructures with sharp interfaces were fabricated by optimizing the key growth parameters. Furthermore, the core/shell size ratio of heterostructures could be easily controlled by changing the thickness ratio of MoO3/WO3 film, and an approximately linear dependence between them is revealed. Compared with MoS2 or WS2 monolayers, the MoS2/WS2 heterostructure exhibited a shortened exciton lifetime owing to the type-II energy band alignment, which is conducive to the application of high-performance devices. This work provides a facile strategy for the synthesis of 2D lateral heterostructures with controllable size ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Cui, B. Li, J. B. Li, and Z. M. Wei, Sci. China-Phys. Mech. Astron. 61, 016801 (2018).

    Article  ADS  Google Scholar 

  2. K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, Science 353, 9439 (2016).

    Article  Google Scholar 

  3. Y. Wang, E. Liu, A. Gao, T. Cao, M. Long, C. Pan, L. Zhang, J. Zeng, C. Wang, W. Hu, S. J. Liang, and F. Miao, ACS Nano 12, 9513 (2018).

    Article  Google Scholar 

  4. K. F. Mak, and J. Shan, Nat. Photon. 10, 216 (2016).

    Article  ADS  Google Scholar 

  5. L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, Science 340, 1311 (2013).

    Article  ADS  Google Scholar 

  6. G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, Nat. Nanotech. 9, 768 (2014).

    Article  ADS  Google Scholar 

  7. J. Li, X. Yang, Y. Liu, B. Huang, R. Wu, Z. Zhang, B. Zhao, H. Ma, W. Dang, Z. Wei, K. Wang, Z. Lin, X. Yan, M. Sun, B. Li, X. Pan, J. Luo, G. Zhang, Y. Liu, Y. Huang, X. Duan, and X. Duan, Nature 579, 368 (2020).

    Article  ADS  Google Scholar 

  8. X. Zhai, X. Xu, J. Peng, F. Jing, Q. Zhang, H. Liu, and Z. Hu, ACS Appl. Mater. Interfaces 12, 24093 (2020).

    Article  Google Scholar 

  9. J. Lee, S. Pak, P. Giraud, Y. W. Lee, Y. Cho, J. Hong, A. R. Jang, H. S. Chung, W. K. Hong, H. Y. Jeong, H. S. Shin, L. G. Occhipinti, S. M. Morris, S. N. Cha, J. I. Sohn, and J. M. Kim, Adv. Mater. 29, 1702206 (2017).

    Article  Google Scholar 

  10. J. Lee, S. Pak, Y. W. Lee, Y. Park, A. R. Jang, J. Hong, Y. Cho, B. Hou, S. Lee, H. Y. Jeong, H. S. Shin, S. M. Morris, S. N. Cha, J. I. Sohn, and J. M. Kim, ACS Nano 13, 13047 (2019).

    Article  Google Scholar 

  11. F. Li, Y. Feng, Z. Li, C. Ma, J. Qu, X. Wu, D. Li, X. Zhang, T. Yang, Y. He, H. Li, X. Hu, P. Fan, Y. Chen, B. Zheng, X. Zhu, X. Wang, X. Duan, and A. Pan, Adv. Mater. 31, 1901351 (2019).

    Article  Google Scholar 

  12. J. Chen, K. Shao, W. Yang, W. Tang, J. Zhou, Q. He, Y. Wu, C. Zhang, X. Li, X. Yang, Z. Wu, and J. Kang, ACS Appl. Mater. Interfaces 11, 19381 (2019).

    Article  Google Scholar 

  13. S. Berweger, H. Zhang, P. K. Sahoo, B. M. Kupp, J. L. Blackburn, E. M. Miller, T. M. Wallis, D. V. Voronine, P. Kabos, and S. U. Nanayakkara, ACS Nano 14, 14080 (2020).

    Article  Google Scholar 

  14. F. Chen, L. Wang, X. Ji, and Q. Zhang, ACS Appl. Mater. Interfaces 9, 30821 (2017).

    Article  Google Scholar 

  15. M. Y. Li, J. Pu, J. K. Huang, Y. Miyauchi, K. Matsuda, T. Takenobu, and L. J. Li, Adv. Funct. Mater. 28, 1706860 (2018).

    Article  Google Scholar 

  16. G. R. Han, T. Chang, and J. W. Jiang, J. Appl. Mech. 86, 061009 (2019).

    Article  ADS  Google Scholar 

  17. T. Chen, D. Ding, J. Shi, G. Wang, L. Kou, X. Zheng, X. Ren, X. Liu, C. Jin, J. Zhong, and G. Hao, J. Phys. Chem. Lett. 10, 5027 (2019).

    Article  Google Scholar 

  18. X. Chen, Y. Qiu, H. Yang, G. Liu, W. Zheng, W. Feng, W. Cao, W. Hu, and P. A. Hu, ACS Appl. Mater. Interfaces 9, 1684 (2017).

    Article  Google Scholar 

  19. P. K. Sahoo, S. Memaran, Y. Xin, L. Balicas, and H. R. Gutiérrez, Nature 553, 63 (2018).

    Article  ADS  Google Scholar 

  20. H. Ma, K. Huang, R. Wu, Z. Zhang, J. Li, B. Zhao, C. Dai, Z. Huang, H. Zhang, X. Yang, B. Li, Y. Liu, X. Duan, and X. Duan, InfoMat 3, 222 (2020).

    Article  Google Scholar 

  21. K. Chen, X. Wan, J. Wen, W. Xie, Z. Kang, X. Zeng, H. Chen, and J. B. Xu, ACS Nano 9, 9868 (2015).

    Article  Google Scholar 

  22. Z. Zhang, P. Chen, X. Duan, K. Zang, J. Luo, and X. Duan, Science 357, 788 (2017).

    Article  Google Scholar 

  23. Q. Fu, X. Wang, J. Zhou, J. Xia, Q. Zeng, D. Lv, C. Zhu, X. Wang, Y. Shen, X. Li, Y. Hua, F. Liu, Z. Shen, C. Jin, and Z. Liu, Chem. Mater. 30, 4001 (2018).

    Article  Google Scholar 

  24. L. Jamilpanah, S. Azizmohseni, S. A. Hosseini, M. Hasheminejad, N. Vesali, A. Iraji Zad, M. Pourfath, and S. M. Mohseni, Phys. Status Solidi RRL 12, 1800418 (2018).

    Article  Google Scholar 

  25. Z. Wang, Y. Xie, H. Wang, R. Wu, T. Nan, Y. Zhan, J. Sun, T. Jiang, Y. Zhao, Y. Lei, M. Yang, W. Wang, Q. Zhu, X. Ma, and Y. Hao, Nanotechnology 28, 325602 (2017).

    Article  Google Scholar 

  26. J. M. Woods, Y. Jung, Y. Xie, W. Liu, Y. Liu, H. Wang, and J. J. Cha, ACS Nano 10, 2004 (2016).

    Article  Google Scholar 

  27. J. Zhu, W. Li, R. Huang, L. Ma, H. Sun, J. H. Choi, L. Zhang, Y. Cui, and G. Zou, J. Am. Chem. Soc. 142, 16276 (2020).

    Article  Google Scholar 

  28. D. Liu, J. Hong, X. Li, X. Zhou, B. Jin, Q. Cui, J. Chen, Q. Feng, C. Xu, T. Zhai, K. Suenaga, and H. Xu, Adv. Funct. Mater. 30, 1910169 (2020).

    Article  Google Scholar 

  29. D. Dumcenco, D. Ovchinnikov, K. Marinov, P. Lazić, M. Gibertini, N. Marzari, O. Lopez Sanchez, Y. C. Kung, D. Krasnozhon, M. W. Chen, S. Bertolazzi, P. Gillet, A. Fontcuberta i Morral, A. Radenovic, and A. Kis, ACS Nano 9, 4611 (2015).

    Article  Google Scholar 

  30. A. Thangaraja, S. M. Shinde, G. Kalita, and M. Tanemura, Mater. Lett. 156, 156 (2015).

    Article  Google Scholar 

  31. W. H. Chae, J. D. Cain, E. D. Hanson, A. A. Murthy, and V. P. Dravid, Appl. Phys. Lett. 111, 143106 (2017).

    Article  ADS  Google Scholar 

  32. A. Sharma, R. Mahlouji, L. Wu, M. A. Verheijen, V. Vandalon, S. Balasubramanyam, J. P. Hofmann, W. M. M. (Erwin) Kessels, and A. A. Bol, Nanotechnology 31, 255603 (2020).

    Article  ADS  Google Scholar 

  33. Y. Yuan, X. Zhang, H. Liu, T. Yang, W. Zheng, B. Zheng, F. Jiang, L. Li, D. Li, X. Zhu, and A. Pan, J. Alloys Compd. 815, 152309 (2020).

    Article  Google Scholar 

  34. Q. Zhu, Z. Wang, X. Cai, W. Wang, G. Wu, L. Kong, X. Zheng, Y. Cao, Y. Wu, X. Li, Z. Wu, and J. Kang, J. Power Sources 465, 228251 (2020).

    Article  Google Scholar 

  35. S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D. S. Narang, K. Liu, J. Ji, J. Li, R. Sinclair, and J. Wu, Nano Lett. 14, 3185 (2014).

    Article  ADS  Google Scholar 

  36. J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, Appl. Phys. Lett. 102, 012111 (2013).

    Article  ADS  Google Scholar 

  37. W. Zheng, B. Zheng, C. Yan, Y. Liu, X. Sun, Z. Qi, T. Yang, Y. Jiang, W. Huang, P. Fan, F. Jiang, W. Ji, X. Wang, and A. Pan, Adv. Sci. 6, 1802204 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaping Wu, Xu Li or Zhiming Wu.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61974123, 61774128, 61874092, 11604275, 61704040, and 61804129), National Science Fund for Excellent Young Scholars (Grant No. 62022068), Natural Science Foundation of Fujian Province of China (Grant Nos. 201810017, and 2019H0002), Natural Science Foundation of Jiangxi Province of China (Grant No. 20192BAB217013), Science and Technology Key Projects of Xiamen (Grant No. 3502ZCQ20191001), and Fundamental Research Funds for the Central Universities (Grant Nos. 20720190055, and 20720190058).

Supporting Information

11433_2021_1745_MOESM1_ESM.pdf

Facile synthesis of two-dimensional MoS2/WS2 lateral heterostructures with controllable core/shell size ratio by a one-step chemical vapor deposition method

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, B., Chen, J., Zhou, X. et al. Facile synthesis of two-dimensional MoS2/WS2 lateral heterostructures with controllable core/shell size ratio by a one-step chemical vapor deposition method. Sci. China Phys. Mech. Astron. 64, 107311 (2021). https://doi.org/10.1007/s11433-021-1745-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1745-6

Navigation