Skip to main content
Log in

Constraining self-interacting dark matter with the full dataset of PandaX-II

  • Article
  • Editor’s Focus
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Self-interacting dark matter (SIDM) is a leading candidate proposed to solve discrepancies between predictions of the prevailing cold dark matter theory and observations of galaxies. Many SIDM models predict the existence of a light force carrier that mediates strong dark matter self-interactions. If the mediator couples to the standard model particles, it could produce characteristic signals in dark matter direct detection experiments. We report searches for signals of SIDM models with a light mediator using the full dataset of the PandaX-II experiment, basing on a total exposure of 132 tonne-days. No significant excess over background is found, and our likelihood analysis leads to a strong upper limit on the dark matter-nucleon coupling strength. We further combine the PandaX-II constraints and those from observations of the light element abundances in the early universe, and show that direct detection and cosmological probes can provide complementary constraints on dark matter models with a light mediator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Bertone, D. Hooper, and J. Silk, Phys. Rep. 405, 279 (2005), arXiv: hep-ph/0404175.

    Article  ADS  Google Scholar 

  2. N. Aghanim, et al. (Planck Collaboration), Astron. Astrophys. 641, A6 (2020), arXiv: 1807.06209.

    Article  Google Scholar 

  3. S. Tulin, and H. B. Yu, Phys. Rep. 730, 1 (2018), arXiv: 1705.02358.

    Article  ADS  MathSciNet  Google Scholar 

  4. J. S. Bullock, and M. Boylan-Kolchin, Annu. Rev. Astron. Astrophys. 55, 343 (2017), arXiv: 1707.04256.

    Article  ADS  Google Scholar 

  5. D. N. Spergel, and P. J. Steinhardt, Phys. Rev. Lett. 84, 3760 (2000), arXiv: astro-ph/9909386.

    Article  ADS  Google Scholar 

  6. M. Kaplinghat, S. Tulin, and H. B. Yu, Phys. Rev. Lett. 116, 041302 (2016), arXiv: 1508.03339.

    Article  ADS  Google Scholar 

  7. M. Kaplinghat, S. Tulin, and H. B. Yu, Phys. Rev. D 89, 035009 (2014).

    Article  ADS  Google Scholar 

  8. E. D. Nobile, M. Kaplinghat, and H. B. Yu, J. Cosmol. Astropart. Phys. 2015(10), 055 (2015), arXiv: 1507.04007.

    Article  Google Scholar 

  9. T. Li, S. Miao, and Y. F. Zhou, J. Cosmol. Astropart. Phys. 2015(03), 032 (2015), arXiv: 1412.6220.

    Article  Google Scholar 

  10. X. Ren, L. Zhao, A. Abdukerim, X. Chen, Y. Chen, X. Cui, D. Fang, C. Fu, K. Giboni, F. Giuliani, L. Gu, X. Guo, K. Han, C. He, D. Huang, S. He, X. Huang, Z. Huang, X. Ji, Y. Ju, Y. Li, H. Lin, H. Liu, J. Liu, Y. Ma, Y. Mao, K. Ni, J. Ning, A. Tan, H. Wang, M. Wang, Q. Wang, S. Wang, X. Wang, S. Wu, J. Xia, M. Xiao, P. Xie, B. Yan, J. Yang, Y. Yang, H. B. Yu, J. Yue, T. Zhang, J. Zhou, N. Zhou, Q. Zheng, and X. Zhou, Phys. Rev. Lett. 121, 021304 (2018), arXiv: 1802.06912.

    Article  ADS  Google Scholar 

  11. E. Aprile, et al. (XENON Collaboration), Phys. Rev. Lett. 123, 251801 (2019), arXiv: 1907.11485.

    Article  ADS  Google Scholar 

  12. R. Huo, M. Kaplinghat, Z. Pan, and H. B. Yu, Phys. Lett. B 783, 76 (2018), arXiv: 1709.09717.

    Article  ADS  Google Scholar 

  13. M. Hufnagel, K. Schmidt-Hoberg, and S. Wild, J. Cosmol. Astropart. Phys. 2018(11), 032 (2018), arXiv: 1808.09324.

    Article  Google Scholar 

  14. P. F. Depta, M. Hufnagel, and K. Schmidt-Hoberg, J. Cosmol. Astropart. Phys. 2021(04), 011 (2021), arXiv: 2011.06519.

    Article  Google Scholar 

  15. A. D. Tan, et al. (PandaX-II Collaboration), Phys. Rev. D 93, 122009 (2016).

    Article  ADS  Google Scholar 

  16. A. Tan, M. Xiao, X. Cui, X. Chen, Y. Chen, D. Fang, C. Fu, K. Giboni, F. Giuliani, H. Gong, X. Guo, K. Han, S. Hu, X. Huang, X. Ji, Y. Ju, S. Lei, S. Li, X. Li, X. Li, H. Liang, Q. Lin, H. Liu, J. Liu, W. Lorenzon, Y. Ma, Y. Mao, K. Ni, X. Ren, M. Schubnell, M. Shen, F. Shi, H. Wang, J. Wang, M. Wang, Q. Wang, S. Wang, X. Wang, Z. Wang, S. Wu, X. Xiao, P. Xie, B. Yan, Y. Yang, J. Yue, X. Zeng, H. Zhang, H. Zhang, H. Zhang, T. Zhang, L. Zhao, J. Zhou, N. Zhou, and X. Zhou, Phys. Rev. Lett. 117, 121303 (2016), arXiv: 1607.07400.

    Article  ADS  Google Scholar 

  17. X. Cui, A. Abdukerim, W. Chen, X. Chen, Y. Chen, B. Dong, D. Fang, C. Fu, K. Giboni, F. Giuliani, L. Gu, Y. Gu, X. Guo, Z. Guo, K. Han, C. He, D. Huang, S. He, X. Huang, Z. Huang, X. Ji, Y. Ju, S. Li, Y. Li, H. Lin, H. Liu, J. Liu, Y. Ma, Y. Mao, K. Ni, J. Ning, X. Ren, F. Shi, A. Tan, C. Wang, H. Wang, M. Wang, Q. Wang, S. Wang, X. Wang, X. Wang, Q. Wu, S. Wu, M. Xiao, P. Xie, B. Yan, Y. Yang, J. Yue, D. Zhang, H. Zhang, T. Zhang, T. Zhang, L. Zhao, J. Zhou, N. Zhou, and X. Zhou, Phys. Rev. Lett. 119, 181302 (2017).

    Article  ADS  Google Scholar 

  18. J. D. Lewin, and P. F. Smith, Astropart. Phys. 6, 87 (1996).

    Article  ADS  Google Scholar 

  19. Y. Z. Chen, Y. A. Luo, L. Li, H. Shen, and X. Q. Li, Commun. Theor. Phys. 55, 1059 (2011), arXiv: 1101.3049.

    Article  ADS  Google Scholar 

  20. C. Savage, G. Gelmini, P. Gondolo, and K. Freese, J. Cosmol. Astropart. Phys. 2009(04), 010 (2009), arXiv: 0808.3607.

    Article  ADS  Google Scholar 

  21. M. C. Smith, G. R. Ruchti, A. Helmi, R. F. G. Wyse, J. P. Fulbright, K. C. Freeman, J. F. Navarro, G. M. Seabroke, M. Steinmetz, M. Williams, O. Bienayme, J. Binney, J. Bland-Hawthorn, W. Dehnen, B. K. Gibson, G. Gilmore, E. K. Grebel, U. Munari, Q. A. Parker, R. D. Scholz, A. Siebert, F. G. Watson, and T. Zwitter, Mon. Not. R. Astron. Soc. 379, 755 (2007), arXiv: astro-ph/0611671.

    Article  ADS  Google Scholar 

  22. Q. Wang, et al. (PandaX-II Collaboration), Chin. Phys. C 44, 125001 (2020), arXiv: 2007.15469.

    Article  ADS  Google Scholar 

  23. Q. H. Wang, et al. (PandaX-II Collaboration), Sci. China-Phys. Mech. Astron. 63, 231011 (2020), arXiv: 1907.00545.

    Article  ADS  Google Scholar 

  24. M. Szydagis, J. Balajthy, J. Brodsky, J. Cutter, J. Huang, E. Kozlova, B. Lenardo, A. Manalaysay, D. McKinsey, M. Mooney, J. Mueller, K. Ni, G. Rischbieter, M. Tripathi, C. Tunnell, V. Velan, and Z. Zhao, Noble Element Simulation Technique (v2.0) (CERN Data Centre & Invenio., 2018).

  25. T. Junk, Nucl. Instrum. Methods Phys. Res. Sect. A 434, 435 (1999).

    Article  ADS  Google Scholar 

  26. B. Holdom, Phys. Lett. B 166, 196 (1986).

    Article  ADS  Google Scholar 

  27. H. G. Zhang, A. Abdukerim, W. Chen, X. Chen, Y. H. Chen, X. Y. Cui, B. B. Dong, D. Q. Fang, C. B. Fu, K. Giboni, F. Giuliani, L. H. Gu, X. Y. Guo, Z. F. Guo, K. Han, C. D. He, S. M. He, D. Huang, X. T. Huang, Z. Huang, P. Ji, X. D. Ji, Y. L. Ju, S. L. Li, Y. Li, H. Lin, H. X. Liu, J. L. Liu, Y. G. Ma, Y. J. Mao, K. X. Ni, J. H. Ning, X. X. Ren, F. Shi, A. D. Tan, A. Q. Wang, C. Wang, H. W. Wang, M. Wang, Q. H. Wang, S. G. Wang, X. L. Wang, X. M. Wang, Z. Wang, M. M. Wu, S. Y. Wu, J. K. Xia, M. J. Xiao, P. W. Xie, B. B. Yan, J. J. Yang, Y. Yang, C. X. Yu, J. M. Yuan, J. F. Yue, D. Zhang, T. Zhang, L Zhao, Q. B. Zheng, J. F. Zhou, N. Zhou, and X. P. Zhou, Sci. China-Phys. Mech. Astron. 62, 031011 (2019), arXiv: 1806.02229.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to Jianglai Liu, Yong Yang or Hai-Bo Yu.

Additional information

This work was supported by a Double Top-class grant from Shanghai Jiao Tong University, and the National Natural Science Foundation of China (Grant No. 11875190). We thank the Office of Science and Technology, Shanghai Municipal Government and the Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education, for important support. This work was supported in part by the Chinese Academy of Sciences Center for Excellence in Particle Physics (CCEPP) and Hongwen Foundation in Hong Kong. Finally, we thank the China Jinping Underground Laboratory (CJPL) administration and the Yalong River Hydropower Development Company Ltd. for indispensable logistical support and other help. Hai-Bo Yu acknowledged support from the U.S. Department of Energy (Grant No. de-sc0008541), and the John Templeton Foundation (Grant No. #61884).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Abdukerim, A., Chen, W. et al. Constraining self-interacting dark matter with the full dataset of PandaX-II. Sci. China Phys. Mech. Astron. 64, 111062 (2021). https://doi.org/10.1007/s11433-021-1740-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1740-2

PACS number(s)

Navigation