Skip to main content

Observation of antichiral edge states in a circuit lattice

Abstract

We construct an electrical circuit to realize a modified Haldane lattice exhibiting the phenomenon of antichiral edge states. The circuit consists of a network of inductors and capacitors with interconnections reproducing the effects of a magnetic vector potential. The next nearest neighbor hoppings are configured differently from the standard Haldane model, and as predicted by earlier theoretical studies, this gives rise to antichiral edge states that propagate in the same direction on opposite edges and coexist with bulk states at the same frequency. Using pickup coils to measure voltage distributions in the circuit, we experimentally verify the key features of the antichiral edge states, including their group velocities and ability to propagate consistently in a Möbius strip configuration.

This is a preview of subscription content, access via your institution.

References

  1. F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).

    ADS  Article  Google Scholar 

  2. M. Z. Hasan, and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010), arXiv: 1002.3895.

    ADS  Article  Google Scholar 

  3. X. L. Qi, and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011), arXiv: 1008.2026.

    ADS  Article  Google Scholar 

  4. L. Lu, J. D. Joannopoulos, and M. Soljačić, Nat. Photon. 8, 821 (2014), arXiv: 1408.6730.

    ADS  Article  Google Scholar 

  5. A. B. Khanikaev, and G. Shvets, Nat. Photon. 11, 763 (2017).

    ADS  Article  Google Scholar 

  6. G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, Nature 515, 237 (2014), arXiv: 1406.7874.

    ADS  Article  Google Scholar 

  7. N. Jia, C. Owens, A. Sommer, D. Schuster, and J. Simon, Phys. Rev. X 5, 021031 (2015).

    Google Scholar 

  8. V. V. Albert, L. I. Glazman, and L. Jiang, Phys. Rev. Lett. 114, 173902 (2015), arXiv: 1410.1243.

    ADS  MathSciNet  Article  Google Scholar 

  9. T. Hofmann, T. Helbig, C. H. Lee, M. Greiter, and R. Thomale, Phys. Rev. Lett. 122, 247702 (2019).

    ADS  Article  Google Scholar 

  10. Z. Q. Zhang, B. L. Wu, J. Song, and H. Jiang, Phys. Rev. B 100, 184202 (2019), arXiv: 1906.04064.

    ADS  Article  Google Scholar 

  11. M. Ezawa, Phys. Rev. B 100, 081401 (2019), arXiv: 1904.03823.

    ADS  Article  Google Scholar 

  12. S. Raghu, and F. D. M. Haldane, Phys. Rev. A 78, 033834 (2008), arXiv: cond-mat/0602501.

    ADS  Article  Google Scholar 

  13. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, Nature 461, 772 (2009).

    ADS  Article  Google Scholar 

  14. Y. Poo, R. X. Wu, Z. Lin, Y. Yang, and C. T. Chan, Phys. Rev. Lett. 106, 093903 (2011).

    ADS  Article  Google Scholar 

  15. R. Fleury, D. L. Sounas, C. F. Sieck, M. R. Haberman, and A. Alù, Science 343, 516 (2014).

    ADS  Article  Google Scholar 

  16. Z. Yang, F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and B. Zhang, Phys. Rev. Lett. 114, 114301 (2015), arXiv: 1411.7100.

    ADS  Article  Google Scholar 

  17. M. Xiao, W. J. Chen, W. Y. He, and C. T. Chan, Nat. Phys. 11, 920 (2015), arXiv: 1503.06295.

    Article  Google Scholar 

  18. C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005), arXiv: cond-mat/0411737.

    ADS  Article  Google Scholar 

  19. B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science 314, 1757 (2006), arXiv: cond-mat/0611399.

    ADS  Article  Google Scholar 

  20. E. Colomés, and M. Franz, Phys. Rev. Lett. 120, 086603 (2018), arXiv: 1709.01026.

    ADS  Article  Google Scholar 

  21. M. Mannaï, and S. Haddad, J. Phys.-Condens. Matter 32, 225501 (2020), arXiv: 1907.11213.

    ADS  Article  Google Scholar 

  22. D. Bhowmick, and P. Sengupta, Phys. Rev. B 101, 195133 (2020), arXiv: 1908.04580.

    ADS  Article  Google Scholar 

  23. S. Mandal, R. Ge, and T. C. H. Liew, Phys. Rev. B 99, 115423 (2019), arXiv: 1903.07814.

    ADS  Article  Google Scholar 

  24. J. Chen, W. Liang, and Z. Y. Li, Phys. Rev. B 101, 214102 (2020).

    ADS  Article  Google Scholar 

  25. C. Wang, L. Zhang, P. Zhang, J. Song, and Y. X. Li, Phys. Rev. B 101, 045407 (2020), arXiv: 1904.06649.

    ADS  Article  Google Scholar 

  26. M. M. Denner, J. L. Lado, and O. Zilberberg, Phys. Rev. Res. 2, 043190 (2020), arXiv: 2006.13903.

    Article  Google Scholar 

  27. Y. Xu, R. L. Chu, and C. Zhang, Phys. Rev. Lett. 112, 136402 (2014), arXiv: 1310.4100.

    ADS  Article  Google Scholar 

  28. C. H. Lee, S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp, T. Kiessling, and R. Thomale, Commun. Phys. 1, 39 (2018), arXiv: 1705.01077.

    Article  Google Scholar 

  29. T. Goren, K. Plekhanov, F. Appas, and K. L. Hur, Phys. Rev. B 97, 041106 (2018), arXiv: 1711.02034.

    ADS  Article  Google Scholar 

  30. K. Luo, J. Feng, Y. X. Zhao, and R. Yu, arXiv: 1810.09231.

  31. K. Luo, R. Yu, and H. Weng, Research 2018, 6793752 (2018).

    Article  Google Scholar 

  32. T. Helbig, T. Hofmann, C. H. Lee, R. Thomale, S. Imhof, L. W. Molenkamp, and T. Kiessling, Phys. Rev. B 99, 161114 (2019), arXiv: 1807.09555.

    ADS  Article  Google Scholar 

  33. Y. Hadad, J. C. Soric, A. B. Khanikaev, and A. Alù, Nat. Electron. 1, 178 (2018).

    Article  Google Scholar 

  34. Y. Wang, L. J. Lang, C. H. Lee, B. Zhang, and Y. D. Chong, Nat. Commun. 10, 1102 (2019), arXiv: 1807.11163.

    ADS  Article  Google Scholar 

  35. M. Ezawa, Phys. Rev. B 98, 201402 (2018), arXiv: 1809.08847.

    ADS  Article  Google Scholar 

  36. S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp, T. Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert, and R. Thomale, Nat. Phys. 14, 925 (2018), arXiv: 1708.03647.

    Article  Google Scholar 

  37. M. Serra-Garcia, R. Süsstrunk, and S. D. Huber, Phys. Rev. B 99, 020304 (2019).

    ADS  Article  Google Scholar 

  38. H. Yang, Z. X. Li, Y. Liu, Y. Cao, and P. Yan, Phys. Rev. Res. 2, 022028 (2020), arXiv: 2004.08274.

    Article  Google Scholar 

  39. R. Yu, Y. X. Zhao, and A. P. Schnyder, Natl. Sci. Rev. 7, 1288 (2020).

    Article  Google Scholar 

  40. Y. Wang, H. M. Price, B. Zhang, and Y. D. Chong, Nat. Commun. 11, 2356 (2020), arXiv: 2001.07427.

    ADS  Article  Google Scholar 

  41. Y. Lu, N. Jia, L. Su, C. Owens, G. Juzeliūnas, D. I. Schuster, and J. Simon, Phys. Rev. B 99, 020302 (2019), arXiv: 1807.05243.

    ADS  Article  Google Scholar 

  42. W. Zhu, S. Hou, Y. Long, H. Chen, and J. Ren, Phys. Rev. B 97, 075310 (2018), arXiv: 1710.07268.

    ADS  Article  Google Scholar 

  43. W. Zhu, Y. Long, H. Chen, and J. Ren, Phys. Rev. B 99, 115410 (2019).

    ADS  Article  Google Scholar 

  44. X. Cheng, C. Jouvaud, X. Ni, S. H. Mousavi, A. Z. Genack, and A. B. Khanikaev, Nat. Mater. 15, 542 (2016).

    ADS  Article  Google Scholar 

  45. C. Owens, A. LaChapelle, B. Saxberg, B. M. Anderson, R. Ma, J. Simon, and D. I. Schuster, Phys. Rev. A 97, 013818 (2018), arXiv: 1708.01651.

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ZhiHong Hang or YiDong Chong.

Additional information

We thank You Wang, Qiang Wang and Udvas Chattopadhyay from Nanyang Technological University for helpful discussions. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11874274, and 12004425), the Natural Science Foundation of Jiangsu Province (Grant Nos. BK20170058, and BK20200630), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). YiDong Chong was supported by the Singapore MOE Academic Research Fund Tier 3 (Grant No. MOE2016-T3-1-006).

Supplementary Information for

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhu, D., Hang, Z. et al. Observation of antichiral edge states in a circuit lattice. Sci. China Phys. Mech. Astron. 64, 257011 (2021). https://doi.org/10.1007/s11433-021-1675-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1675-0

Keywords

  • antichiral edge state
  • modified Haldane model
  • topological circuit