Abstract
TaC nanowires are expected to be an ideal reinforcing material in ultra-high-temperature ceramics. However, their growth mechanisms and mechanical properties remain unclear, and low-cost large-scale synthesis has not been realised. In this study, bulk synthesis of [100]-oriented TaC nanowires is accomplished by carbothermal synthesis through a direct vapor-solid mechanism. Thermal resonance test results show that the synthesized square TaC nanowires with cross-sectional side-lengths of 65 to 497 nm have a size-independent Young’s modulus of (510.6±12.6) GPa; very close to the corresponding values of their bulk counterparts, but differing considerably from previously published measurements. Molecular dynamics (MD) simulations show that TaC nanowires with side-lengths of above 15 nm have a constant Young’s modulus of 517 GPa, and size effects on the modulus values should only occur at side-lengths below 15 nm. During bending tests, the TaC nanowires fracture into several segments in a brittle mode, and exhibit an increasing fracture strain from 1.88% to 4.28% as their side-length decreases from 489 to 90 nm. Weibull statistics analyses and TEM observations indicate that the failure of the nanowires should be primarily dependent on the number and size of surface defects. MD simulations further reveal that the defect-free TaC nanowires fail brittlely at a theoretical strain up to 5.76%.
This is a preview of subscription content, access via your institution.
References
I. L. Shabalin, Tantalum Carbides (Springer Netherlands, Dordrecht, 2019).
G. Zhao, C. Huang, H. Liu, B. Zou, H. Zhu, and J. Wang, Int. J. Refract. Met. Hard Mater. 36, 122 (2013).
W. Sun, X. Kuang, H. Liang, X. Xia, Z. Zhang, C. Lu, and A. Hermann, Phys. Chem. Chem. Phys. 22, 5018 (2020).
L. Wang, Z. Zhang, and X. Han, NPG Asia Mater. 5, e40 (2013).
Y. Chen, X. An, and X. Liao, Appl. Phys. Rev. 4, 031104 (2017).
Y. Zhu, Appl. Mech. Rev. 69, 010802 (2017).
Z. Liu, I. Papadimitriou, M. Castillo-RodrÃguez, C. Wang, G. Esteban-Manzanares, X. Yuan, H. H. Tan, J. M. Molina-AldareguÃa, and J. Llorca, Nano Lett. 19, 4490 (2019), arXiv: 1908.11239.
J. Cui, Z. Zhang, H. Jiang, D. Liu, L. Zou, X. Guo, Y. Lu, I. P. Parkin, and D. Guo, ACS Nano 13, 7483 (2019).
S. Wang, Z. Shan, and H. Huang, Adv. Sci. 4, 1600332 (2017).
Z. P. Xu, and Q. S. Zheng, Sci. China-Phys. Mech. Astron. 61, 074601 (2018).
X. Tao, J. Du, Y. Li, Y. Yang, Z. Fan, Y. Gan, H. Huang, W. Zhang, L. Dong, and X. Li, Adv. Energy Mater. 1, 534 (2011).
N. Ahlén, M. Johnsson, A. K. Larsson, and B. Sundman, J. Eur. Ceram. Soc. 20, 2607 (2000).
M. Johnsson, and M. Nygren, J. Mater. Res. 12, 2419 (1997).
G. Zhao, C. Huang, H. Liu, L. Xu, X. Chong, B. Zou, and H. Zhu, Mater. Res. Bull. 47, 2027 (2012).
S. Wang, Y. He, J. Zou, Y. Jiang, J. Xu, B. Huang, C. T. Liu, and P. K. Liaw, J. Cryst. Growth 306, 433 (2007).
S. L. Wang, Y. H. He, J. Zou, Y. Wang, H. Huang, B. Y. Huang, C. T. Liu, and P. K. Liaw, Nanotechnology 19, 345604 (2008).
C. Wang, Y. H. He, L. Z. Hou, S. L. Wang, X. L. Liu, Q. Zhang, and C. Q. Peng, Nano 08, 1350010 (2013).
Y. Wang, V. Schmidt, S. Senz, and U. Gösele, Nat. Nanotech. 1, 186 (2006).
J. L. Lensch-Falk, E. R. Hemesath, F. J. Lopez, and L. J. Lauhon, J. Am. Chem. Soc. 129, 10670 (2007).
B. N. Mbenkum, E. Barrena, X. N. Zhang, M. Kelsch, and H. Dosch, Nano Lett. 6, 2852 (2006).
J. L. Yang, S. Schumann, and T. S. Jones, J. Mater. Chem. 21, 5812 (2011).
Y. Wu, X. Zhang, H. Pan, X. Zhang, Y. Zhang, X. Zhang, and J. Jie, Nanotechnology 24, 355201 (2013).
Y. J. Chen, J. B. Li, Q. M. Wei, and H. Z. Zhai, Mater. Lett. 56, 279 (2002).
S. Wang, G. Chen, H. Huang, S. Ma, H. Xu, Y. He and J. Zou, Nanotechnology 24, 505705 (2013).
S. Wang, Q. Huang, Y. Wu, and H. Huang, Nanotechnology 27, 475701 (2016).
T. Yibibulla, Y. Jiang, S. Wang, and H. Huang, Appl. Phys. Lett. 118, 043103 (2021).
S. Wang, Y. He, H. Huang, J. Zou, G. J. Auchterlonie, L. Hou, and B. Huang, Nanotechnology 24, 285703 (2013).
S. Wang, Y. Wu, L. Lin, Y. He, and H. Huang, Small 11, 1672 (2015).
J. L. Mead, H. Xie, S. Wang, and H. Huang, Nanoscale 10, 3410 (2018).
J. L. Mead, S. Wang, S. Zimmermann, and H. Huang, Nanoscale 12, 8237 (2020).
S. Plimpton, J. Comput. Phys. 117, 1 (1995).
B. J. Lee, M. I. Baskes, H. Kim, and Y. Koo Cho, Phys. Rev. B 64, 184102 (2001).
F. Ercolessi, and J. B. Adams, Europhys. Lett. 26, 583 (1994), arXiv: cond-mat/9306054.
W. G. Hoover, Computational Statistical Mechanics (Elsevier, Amsterdam, 1991).
A. Roy, S. P. Ju, S. Wang, and H. Huang, Nanotechnology 30, 065705 (2019).
D. Srolovitz, K. Maeda, V. Vitek, and T. Egami, Philos. Mag. A 44, 847 (1981).
W. L. Yan, M. Sygnatowicz, G. H. Lu, F. Liu, and D. K. Shetty, Surf. Sci. 644, 24 (2016).
S. Wang, Y. He, X. Fang, J. Zou, Y. Wang, H. Huang, P. M. F. J. Costa, M. Song, B. Huang, C. T. Liu, P. K. Liaw, Y. Bando, and D. Golberg, Adv. Mater. 21, 2387 (2009).
X. Yuan, J. Yang, J. He, H. H. Tan, and C. Jagadish, J. Phys. D-Appl. Phys. 51, 283002 (2018).
T. Liu, S. Wang, L. Hou, and H. Huang, Int. J. Mod. Phys. B 33, 1950371 (2019).
V. D. Belov, Y. K. Ustinov, and A. P. Komar, Surf. Sci. 72, 390 (1978).
R. Klein, and L. B. Leder, J. Chem. Phys. 38, 1866 (1963).
R. D. Blevins, Formulas for Natural Frequency and Mode Shape (Van Nostrand Reinhold, New York, 1979).
M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature 381, 678 (1996).
L. Hou, L. Zheng, S. Wang, and H. Huang, AIP Adv. 9, 085101 (2019).
M. S. Koval’chenko, G. A. Bovkun, Y. G. Tkachenko, and I. P. Ragozin, Sov. Powder Metall. Met. Ceram. 22, 1034 (1983).
L. López-de-la-Torre, B. Winkler, J. Schreuer, K. Knorr, and M. Avalos-Borja, Solid State Commun. 134, 245 (2005).
W. Weber, Phys. Rev. B 8, 5082 (1973).
J. Li, X. Wang, K. Liu, D. Li, and L. Chen, J. Superhard Mater. 33, 173 (2011).
L. Hou, S. Wang, and H. Huang, Nanotechnology 26, 165702 (2015).
L. Hou, J. Lee Mead, S. Wang, and H. Huang, Appl. Surf. Sci. 465, 584 (2019).
M. C. Strus, L. Zalamea, A. Raman, R. B. Pipes, C. V. Nguyen, and E. A. Stach, Nano Lett. 8, 544 (2008).
M. Antsov, L. Dorogin, S. Vlassov, B. Polyakov, M. Vahtrus, K. Mougin, R. Lõhmus, and I. Kink, Tribol. Int. 72, 31 (2014).
G. P. Cherepanov, Mechanics of Brittle Fracture (McGraw-Hill International Book Co., New York, 1979).
Z. Wang, J. Ning, and H. Ren, Theor. Appl. Fract. Mech. 96, 72 (2018).
M. A. Meyers, Dynamic Behavior of Materials (Wiley, Hoboken, 1994).
J. R. Gladden, N. Z. Handzy, A. Belmonte, and E. Villermaux, Phys. Rev. Lett. 94, 035503 (2005), arXiv: cond-mat/0410642.
B. Audoly, and S. Neukirch, Phys. Rev. Lett. 95, 095505 (2005).
M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Science 287, 637 (2000).
R. Agrawal, B. Peng, and H. D. Espinosa, Nano Lett. 9, 4177 (2009).
A. Roy, J. Mead, S. Wang, and H. Huang, Sci. Rep. 7, 9547 (2017).
F. Erdogan, and G. C. Sih, J. Basic Eng. 85, 519 (1963).
M. J. Matthewson, C. R. Kurkjian, and S. T. Gulati, J Am. Ceram. Soc. 69, 815 (1986).
Y. Zhu, Q. Qin, F. Xu, F. Fan, Y. Ding, T. Zhang, B. J. Wiley, and Z. L. Wang, Phys. Rev. B 85, 045443 (2012).
S. Choi, J. H. Lee, M. W. Pin, D. W. Jang, S. G. Hong, B. Cho, S. J. Lee, J. S. Jeong, S. H. Yi, and Y. H. Kim, RSC Adv. 7, 16655 (2017).
F. Shimizu, S. Ogata, and J. Li, Mater. Trans. 48, 2923 (2007).
J. Wang, P. D. Hodgson, J. Zhang, W. Yan, and C. Yang, Comput. Mater. Sci. 50, 211 (2010).
D. J. Rowcliffe, and W. J. Warren, J. Mater. Sci. 5, 345 (1970).
S. Kiani, C. Ratsch, A. M. Minor, J. M. Yang, and S. Kodambaka, Scr. Mater. 100, 13 (2015).
X. Ye, T. Wang, Z. Zhuang, and X. D. Li, Sci. China-Phys. Mech. Astron. 62, 994611 (2019).
Author information
Authors and Affiliations
Corresponding authors
Additional information
This work was supported by the National Natural Science Foundation of China (Grant No. 11674399), the Hunan Provincial Natural Science Foundation of China (Grant No. 2020JJ4676), the Fundamental Research Funds for the Central Universities of Central South University, and the Australian Research Council (Grant No. DP160103190). The authors would like to acknowledge the facilities and the technical assistance from the Centre for Microscopy and Microanalysis, The University of Queensland, and the Queensland node of the Australian National Fabrication Facility (ANFF).
Electronic supplementary material
About this article
Cite this article
Wang, S., Ma, L., Mead, J.L. et al. Catalyst-free synthesis and mechanical characterization of TaC nanowires. Sci. China Phys. Mech. Astron. 64, 254612 (2021). https://doi.org/10.1007/s11433-020-1672-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11433-020-1672-7