Skip to main content
Log in

Catalyst-free synthesis and mechanical characterization of TaC nanowires

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

TaC nanowires are expected to be an ideal reinforcing material in ultra-high-temperature ceramics. However, their growth mechanisms and mechanical properties remain unclear, and low-cost large-scale synthesis has not been realised. In this study, bulk synthesis of [100]-oriented TaC nanowires is accomplished by carbothermal synthesis through a direct vapor-solid mechanism. Thermal resonance test results show that the synthesized square TaC nanowires with cross-sectional side-lengths of 65 to 497 nm have a size-independent Young’s modulus of (510.6±12.6) GPa; very close to the corresponding values of their bulk counterparts, but differing considerably from previously published measurements. Molecular dynamics (MD) simulations show that TaC nanowires with side-lengths of above 15 nm have a constant Young’s modulus of 517 GPa, and size effects on the modulus values should only occur at side-lengths below 15 nm. During bending tests, the TaC nanowires fracture into several segments in a brittle mode, and exhibit an increasing fracture strain from 1.88% to 4.28% as their side-length decreases from 489 to 90 nm. Weibull statistics analyses and TEM observations indicate that the failure of the nanowires should be primarily dependent on the number and size of surface defects. MD simulations further reveal that the defect-free TaC nanowires fail brittlely at a theoretical strain up to 5.76%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. L. Shabalin, Tantalum Carbides (Springer Netherlands, Dordrecht, 2019).

    Book  Google Scholar 

  2. G. Zhao, C. Huang, H. Liu, B. Zou, H. Zhu, and J. Wang, Int. J. Refract. Met. Hard Mater. 36, 122 (2013).

    Article  Google Scholar 

  3. W. Sun, X. Kuang, H. Liang, X. Xia, Z. Zhang, C. Lu, and A. Hermann, Phys. Chem. Chem. Phys. 22, 5018 (2020).

    Article  Google Scholar 

  4. L. Wang, Z. Zhang, and X. Han, NPG Asia Mater. 5, e40 (2013).

    Article  Google Scholar 

  5. Y. Chen, X. An, and X. Liao, Appl. Phys. Rev. 4, 031104 (2017).

    Article  ADS  Google Scholar 

  6. Y. Zhu, Appl. Mech. Rev. 69, 010802 (2017).

    Article  ADS  Google Scholar 

  7. Z. Liu, I. Papadimitriou, M. Castillo-Rodríguez, C. Wang, G. Esteban-Manzanares, X. Yuan, H. H. Tan, J. M. Molina-Aldareguía, and J. Llorca, Nano Lett. 19, 4490 (2019), arXiv: 1908.11239.

    Article  ADS  Google Scholar 

  8. J. Cui, Z. Zhang, H. Jiang, D. Liu, L. Zou, X. Guo, Y. Lu, I. P. Parkin, and D. Guo, ACS Nano 13, 7483 (2019).

  9. S. Wang, Z. Shan, and H. Huang, Adv. Sci. 4, 1600332 (2017).

    Article  Google Scholar 

  10. Z. P. Xu, and Q. S. Zheng, Sci. China-Phys. Mech. Astron. 61, 074601 (2018).

    Article  ADS  Google Scholar 

  11. X. Tao, J. Du, Y. Li, Y. Yang, Z. Fan, Y. Gan, H. Huang, W. Zhang, L. Dong, and X. Li, Adv. Energy Mater. 1, 534 (2011).

    Article  Google Scholar 

  12. N. Ahlén, M. Johnsson, A. K. Larsson, and B. Sundman, J. Eur. Ceram. Soc. 20, 2607 (2000).

    Article  Google Scholar 

  13. M. Johnsson, and M. Nygren, J. Mater. Res. 12, 2419 (1997).

    Article  ADS  Google Scholar 

  14. G. Zhao, C. Huang, H. Liu, L. Xu, X. Chong, B. Zou, and H. Zhu, Mater. Res. Bull. 47, 2027 (2012).

    Article  Google Scholar 

  15. S. Wang, Y. He, J. Zou, Y. Jiang, J. Xu, B. Huang, C. T. Liu, and P. K. Liaw, J. Cryst. Growth 306, 433 (2007).

    Article  ADS  Google Scholar 

  16. S. L. Wang, Y. H. He, J. Zou, Y. Wang, H. Huang, B. Y. Huang, C. T. Liu, and P. K. Liaw, Nanotechnology 19, 345604 (2008).

    Article  Google Scholar 

  17. C. Wang, Y. H. He, L. Z. Hou, S. L. Wang, X. L. Liu, Q. Zhang, and C. Q. Peng, Nano 08, 1350010 (2013).

    Article  Google Scholar 

  18. Y. Wang, V. Schmidt, S. Senz, and U. Gösele, Nat. Nanotech. 1, 186 (2006).

    Article  ADS  Google Scholar 

  19. J. L. Lensch-Falk, E. R. Hemesath, F. J. Lopez, and L. J. Lauhon, J. Am. Chem. Soc. 129, 10670 (2007).

    Article  Google Scholar 

  20. B. N. Mbenkum, E. Barrena, X. N. Zhang, M. Kelsch, and H. Dosch, Nano Lett. 6, 2852 (2006).

    Article  ADS  Google Scholar 

  21. J. L. Yang, S. Schumann, and T. S. Jones, J. Mater. Chem. 21, 5812 (2011).

    Article  Google Scholar 

  22. Y. Wu, X. Zhang, H. Pan, X. Zhang, Y. Zhang, X. Zhang, and J. Jie, Nanotechnology 24, 355201 (2013).

    Article  ADS  Google Scholar 

  23. Y. J. Chen, J. B. Li, Q. M. Wei, and H. Z. Zhai, Mater. Lett. 56, 279 (2002).

    Article  Google Scholar 

  24. S. Wang, G. Chen, H. Huang, S. Ma, H. Xu, Y. He and J. Zou, Nanotechnology 24, 505705 (2013).

    Article  Google Scholar 

  25. S. Wang, Q. Huang, Y. Wu, and H. Huang, Nanotechnology 27, 475701 (2016).

    Article  ADS  Google Scholar 

  26. T. Yibibulla, Y. Jiang, S. Wang, and H. Huang, Appl. Phys. Lett. 118, 043103 (2021).

    Article  ADS  Google Scholar 

  27. S. Wang, Y. He, H. Huang, J. Zou, G. J. Auchterlonie, L. Hou, and B. Huang, Nanotechnology 24, 285703 (2013).

    Article  Google Scholar 

  28. S. Wang, Y. Wu, L. Lin, Y. He, and H. Huang, Small 11, 1672 (2015).

    Article  Google Scholar 

  29. J. L. Mead, H. Xie, S. Wang, and H. Huang, Nanoscale 10, 3410 (2018).

    Article  Google Scholar 

  30. J. L. Mead, S. Wang, S. Zimmermann, and H. Huang, Nanoscale 12, 8237 (2020).

    Article  Google Scholar 

  31. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  ADS  Google Scholar 

  32. B. J. Lee, M. I. Baskes, H. Kim, and Y. Koo Cho, Phys. Rev. B 64, 184102 (2001).

    Article  ADS  Google Scholar 

  33. F. Ercolessi, and J. B. Adams, Europhys. Lett. 26, 583 (1994), arXiv: cond-mat/9306054.

    Article  ADS  Google Scholar 

  34. W. G. Hoover, Computational Statistical Mechanics (Elsevier, Amsterdam, 1991).

    Google Scholar 

  35. A. Roy, S. P. Ju, S. Wang, and H. Huang, Nanotechnology 30, 065705 (2019).

    Article  ADS  Google Scholar 

  36. D. Srolovitz, K. Maeda, V. Vitek, and T. Egami, Philos. Mag. A 44, 847 (1981).

    Article  ADS  Google Scholar 

  37. W. L. Yan, M. Sygnatowicz, G. H. Lu, F. Liu, and D. K. Shetty, Surf. Sci. 644, 24 (2016).

    Article  ADS  Google Scholar 

  38. S. Wang, Y. He, X. Fang, J. Zou, Y. Wang, H. Huang, P. M. F. J. Costa, M. Song, B. Huang, C. T. Liu, P. K. Liaw, Y. Bando, and D. Golberg, Adv. Mater. 21, 2387 (2009).

    Article  Google Scholar 

  39. X. Yuan, J. Yang, J. He, H. H. Tan, and C. Jagadish, J. Phys. D-Appl. Phys. 51, 283002 (2018).

    Article  Google Scholar 

  40. T. Liu, S. Wang, L. Hou, and H. Huang, Int. J. Mod. Phys. B 33, 1950371 (2019).

    Article  ADS  Google Scholar 

  41. V. D. Belov, Y. K. Ustinov, and A. P. Komar, Surf. Sci. 72, 390 (1978).

    Article  ADS  Google Scholar 

  42. R. Klein, and L. B. Leder, J. Chem. Phys. 38, 1866 (1963).

    Article  ADS  Google Scholar 

  43. R. D. Blevins, Formulas for Natural Frequency and Mode Shape (Van Nostrand Reinhold, New York, 1979).

    Google Scholar 

  44. M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature 381, 678 (1996).

    Article  ADS  Google Scholar 

  45. L. Hou, L. Zheng, S. Wang, and H. Huang, AIP Adv. 9, 085101 (2019).

    Article  ADS  Google Scholar 

  46. M. S. Koval’chenko, G. A. Bovkun, Y. G. Tkachenko, and I. P. Ragozin, Sov. Powder Metall. Met. Ceram. 22, 1034 (1983).

    Article  Google Scholar 

  47. L. López-de-la-Torre, B. Winkler, J. Schreuer, K. Knorr, and M. Avalos-Borja, Solid State Commun. 134, 245 (2005).

    Article  ADS  Google Scholar 

  48. W. Weber, Phys. Rev. B 8, 5082 (1973).

    Article  ADS  Google Scholar 

  49. J. Li, X. Wang, K. Liu, D. Li, and L. Chen, J. Superhard Mater. 33, 173 (2011).

    Article  Google Scholar 

  50. L. Hou, S. Wang, and H. Huang, Nanotechnology 26, 165702 (2015).

    Article  ADS  Google Scholar 

  51. L. Hou, J. Lee Mead, S. Wang, and H. Huang, Appl. Surf. Sci. 465, 584 (2019).

    Article  ADS  Google Scholar 

  52. M. C. Strus, L. Zalamea, A. Raman, R. B. Pipes, C. V. Nguyen, and E. A. Stach, Nano Lett. 8, 544 (2008).

    Article  ADS  Google Scholar 

  53. M. Antsov, L. Dorogin, S. Vlassov, B. Polyakov, M. Vahtrus, K. Mougin, R. Lõhmus, and I. Kink, Tribol. Int. 72, 31 (2014).

    Article  Google Scholar 

  54. G. P. Cherepanov, Mechanics of Brittle Fracture (McGraw-Hill International Book Co., New York, 1979).

    MATH  Google Scholar 

  55. Z. Wang, J. Ning, and H. Ren, Theor. Appl. Fract. Mech. 96, 72 (2018).

    Article  Google Scholar 

  56. M. A. Meyers, Dynamic Behavior of Materials (Wiley, Hoboken, 1994).

    Book  MATH  Google Scholar 

  57. J. R. Gladden, N. Z. Handzy, A. Belmonte, and E. Villermaux, Phys. Rev. Lett. 94, 035503 (2005), arXiv: cond-mat/0410642.

    Article  ADS  Google Scholar 

  58. B. Audoly, and S. Neukirch, Phys. Rev. Lett. 95, 095505 (2005).

    Article  ADS  Google Scholar 

  59. M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Science 287, 637 (2000).

    Article  ADS  Google Scholar 

  60. R. Agrawal, B. Peng, and H. D. Espinosa, Nano Lett. 9, 4177 (2009).

    Article  ADS  Google Scholar 

  61. A. Roy, J. Mead, S. Wang, and H. Huang, Sci. Rep. 7, 9547 (2017).

    Article  ADS  Google Scholar 

  62. F. Erdogan, and G. C. Sih, J. Basic Eng. 85, 519 (1963).

    Article  Google Scholar 

  63. M. J. Matthewson, C. R. Kurkjian, and S. T. Gulati, J Am. Ceram. Soc. 69, 815 (1986).

    Article  Google Scholar 

  64. Y. Zhu, Q. Qin, F. Xu, F. Fan, Y. Ding, T. Zhang, B. J. Wiley, and Z. L. Wang, Phys. Rev. B 85, 045443 (2012).

    Article  ADS  Google Scholar 

  65. S. Choi, J. H. Lee, M. W. Pin, D. W. Jang, S. G. Hong, B. Cho, S. J. Lee, J. S. Jeong, S. H. Yi, and Y. H. Kim, RSC Adv. 7, 16655 (2017).

    Article  ADS  Google Scholar 

  66. F. Shimizu, S. Ogata, and J. Li, Mater. Trans. 48, 2923 (2007).

    Article  Google Scholar 

  67. J. Wang, P. D. Hodgson, J. Zhang, W. Yan, and C. Yang, Comput. Mater. Sci. 50, 211 (2010).

    Article  Google Scholar 

  68. D. J. Rowcliffe, and W. J. Warren, J. Mater. Sci. 5, 345 (1970).

    Article  ADS  Google Scholar 

  69. S. Kiani, C. Ratsch, A. M. Minor, J. M. Yang, and S. Kodambaka, Scr. Mater. 100, 13 (2015).

    Article  Google Scholar 

  70. X. Ye, T. Wang, Z. Zhuang, and X. D. Li, Sci. China-Phys. Mech. Astron. 62, 994611 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiliang Wang, Shin-Pon Ju or Han Huang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 11674399), the Hunan Provincial Natural Science Foundation of China (Grant No. 2020JJ4676), the Fundamental Research Funds for the Central Universities of Central South University, and the Australian Research Council (Grant No. DP160103190). The authors would like to acknowledge the facilities and the technical assistance from the Centre for Microscopy and Microanalysis, The University of Queensland, and the Queensland node of the Australian National Fabrication Facility (ANFF).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Ma, L., Mead, J.L. et al. Catalyst-free synthesis and mechanical characterization of TaC nanowires. Sci. China Phys. Mech. Astron. 64, 254612 (2021). https://doi.org/10.1007/s11433-020-1672-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1672-7

Keywords

Navigation