Skip to main content
Log in

Machine learning for nanohertz gravitational wave detection and parameter estimation with pulsar timing array

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Studies have shown that the use of pulsar timing arrays (PTAs) is among the approaches with the highest potential to detect very low-frequency gravitational waves in the near future. Although the capture of gravitational waves (GWs) by PTAs has not been reported yet, many related theoretical studies and some meaningful detection limits have been reported. In this study, we focused on the nanohertz GWs from individual supermassive binary black holes. Given specific pulsars (PSR J1909-3744, PSR J1713+0747, PSR J0437-4715), the corresponding GW-induced timing residuals in PTAs with Gaussian white noise can be simulated. Further, we report the classification of the simulated PTA data and parameter estimation for potential GW sources using machine learning based on neural networks. As a classifier, the convolutional neural network shows high accuracy when the combined signal to noise ratio ≥1.33 for our simulated data. Further, we applied a recurrent neural network to estimate the chirp mass (ℳ) of the source and luminosity distance (Dp) of the pulsars and Bayesian neural networks (BNNs) to obtain the uncertainties of chirp mass estimation. Knowledge of the uncertainties is crucial to astrophysical observation. In our case, the mean relative error of chirp mass estimation is less than 13.6%. Although these results are achieved for simulated PTA data, we believe that they will be important for realizing intelligent processing in PTA data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. J. Liu, Pulsar Timing Arrays and the Detection of Gravtationalwave Background, Dissertation for Master’s Degree (University of Science and Technology of China, Beijing, 2016).

    Google Scholar 

  2. X. J. Zhu, Modern Phys. 2, 10 (2016).

    Google Scholar 

  3. X. J. Zhu, G. Hobbs, L. Wen, W. A. Coles, J. B. Wang, R. M. Shannon, R. N. Manchester, M. Bailes, N. D. R. Bhat, S. Burke-Spolaor, S. Dai, M. J. Keith, M. Kerr, Y. Levin, D. R. Madison, S. Osłowski, V. Ravi, L. Toomey, and W. van Straten, Mon. Not. R. Astron. Soc. 444, 3709 (2014), arXiv: 1408.5129.

    Article  ADS  Google Scholar 

  4. K. J. Lee, N. Wex, M. Kramer, B. W. Stappers, C. G. Bassa, G. H. Janssen, R. Karuppusamy, and R. Smits, Mon. Not. R. Astron. Soc. 414, 3251 (2011), arXiv: 1103.0115.

    Article  ADS  Google Scholar 

  5. Y. Feng, D. Li, Y. R. Li, and J. M. Wang, Res. Astron. Astrophys. 19, 178 (2019), arXiv: 1907.03460.

    Article  ADS  Google Scholar 

  6. S. R. Taylor, M. Vallisneri, J. A. Ellis, C. M. F. Mingarelli, T. J. W. Lazio, and R. Haasteren, Astrophys. J. 819, L6 (2016), arXiv: 1511.05564.

    Article  ADS  Google Scholar 

  7. J. A. Ellis, F. A. Jenet, and M. A. McLaughlin, Astrophys. J. 753, 96 (2012), arXiv: 1202.0808.

    Article  ADS  Google Scholar 

  8. H. Nakano, T. Narikawa, K. Oohara, K. Sakai, H. Shinkai, H. Takahashi, T. Tanaka, N. Uchikata, S. Yamamoto, and T. S. Yamamoto, Phys. Rev. D 99, 124032 (2019), arXiv: 1811.06443.

    Article  ADS  Google Scholar 

  9. S. Taylor, J. Ellis, and J. Gair, Phys. Rev. D 90, 104028 (2014), arXiv: 1406.5224.

    Article  ADS  Google Scholar 

  10. S. J. Vigeland, K. Islo, S. R. Taylor, and J. A. Ellis, Phys. Rev. D 98, 044003 (2018), arXiv: 1805.12188.

    Article  ADS  Google Scholar 

  11. J. A. Ellis, and N. J. Cornish, Phys. Rev. D 93, 084048 (2016), arXiv:1601.00650.

    Article  ADS  MathSciNet  Google Scholar 

  12. D. George, H. Shen, and E. A. Huerta, Phys. Rev. D 97, 101501 (2018), arXiv: 1706.07446.

    Article  ADS  Google Scholar 

  13. M. Razzano, and E. Cuoco, Class. Quantum Grav. 35, 095016 (2018), arXiv: 1803.09933.

    Article  ADS  Google Scholar 

  14. E. A. Huerta, D. George, Z. Z. Zhao, and G. Allen, arXiv: 1805.02716.

  15. D. George, and E. A. Huerta, Phys. Rev. D 97, 044039 (2018), arXiv: 1701.00008.

    Article  ADS  Google Scholar 

  16. D. George, and E. A. Huerta, Phys. Lett. B 778, 64 (2018), arXiv: 1711.03121.

    Article  ADS  Google Scholar 

  17. G. Allen, I. Andreoni, E. Bachelet, G. B. Berriman, F. B. Bianco, R. Biswas, M. C. Kind, K. Chard, M. Cho, P. S. Cowperthwaite, Z. B. Etienne, D. George, T. Gibbs, M. Graham, W. Gropp, A. Gupta, R. Haas, E. A. Huerta, E. Jennings, D. S. Katz, A. Khan, V. Kindratenko, W. T. C. Kramer, X. Liu, A. Mahabal, K. McHenry, J. M. Miller, M. S. Neubauer, S. Oberlin, A. R. Olivas Jr, S. Rosofsky, M. Ruiz, A. Saxton, B. Schutz, A. Schwing, E. Seidel, S. L. Shapiro, H. Y. Shen, Y. Shen, B. M. Sipöcz, L. N. Sun, J. Towns, A. Tsokaros, W. Wei, J. Wells, T. J. Williams, J. J. Xiong, and Z. Z. Zhao, arXiv: 1902.00522.

  18. H. Y. Shen, E. A. Huerta, Z. Z. Zhao, E. Jennings, and H. Sharma, arXiv: 1903.01998.

  19. C. Chatterjee, L. Wen, K. Vinsen, M. Kovalam, and A. Datta, Phys. Rev. D 100, 103025 (2019), arXiv: 1909.06367.

    Article  ADS  Google Scholar 

  20. H. Wang, S. Wu, Z. Cao, X. Liu, and J. Y. Zhu, Phys. Rev. D 101, 104003 (2020), arXiv: 1909.13442.

    Article  ADS  MathSciNet  Google Scholar 

  21. W. Wei, and E. A. Huerta, Phys. Lett. B 800, 135081 (2020), arXiv: 1901.00869.

    Article  MathSciNet  Google Scholar 

  22. X. R. Li, W. L. Yu, X. L. Fan, and G. J. Babu, Front. Phys. 15, 54501 (2020).

    Article  ADS  Google Scholar 

  23. J. A. González, and F. S. Guzmán, Phys. Rev. D 97, 063001 (2018), arXiv: 1803.06060.

    Article  ADS  Google Scholar 

  24. L. Perreault Levasseur, Y. D. Hezaveh, and R. H. Wechsler, Astrophys. J. 850, L7 (2017), arXiv: 1708.08843.

    Article  ADS  Google Scholar 

  25. Y. D. Hezaveh, L. P. Levasseur, and P. J. Marshall, Nature 548, 555 (2017), arXiv: 1708.08842.

    Article  ADS  Google Scholar 

  26. C. Escamilla-Rivera, M. A. C. Quintero, and S. Capozziello, arXiv: 1910.02788v1.

  27. S. Burke-Spolaor, S. R. Taylor, M. Charisi, T. Dolch, J. S. Hazboun, A. M. Holgado, L. Z. Kelley, T. J. W. Lazio, D. R. Madison, N. McMann, C. M. F. Mingarelli, A. Rasskazov, X. Siemens, J. J. Simon, and T. L. Smith, Astron. Astrophys. Rev. 27, 5 (2019), arXiv: 1811.08826.

    Article  ADS  Google Scholar 

  28. S. R. Taylor, E. A. Huerta, J. R. Gair, and S. T. McWilliams, Astrophys. J. 817, 70 (2016), arXiv: 1505.06208.

    Article  ADS  Google Scholar 

  29. A. Rebei, E. A. Huerta, S. Wang, S. Habib, R. Haas, D. Johnson, and D. George, Phys. Rev. D 100, 044025 (2019), arXiv: 1807.09787.

    Article  ADS  MathSciNet  Google Scholar 

  30. P. C. Peters, and J. Mathews, Phys. Rev. 131, 435 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  31. R. M. Shannon, V. Ravi, L. T. Lentati, P. D. Lasky, G. Hobbs, M. Kerr, R. N. Manchester, W. A. Coles, Y. Levin, M. Bailes, N. D. R. Bhat, S. Burke-Spolaor, S. Dai, M. J. Keith, S. Osowski, D. J. Reardon, W. van Straten, L. Toomey, J. B. Wang, L. Wen, J. S. B. Wyithe, and X. J. Zhu, Science 349, 1522 (2015), arXiv: 1509.07320.

    Article  ADS  MathSciNet  Google Scholar 

  32. X. L. Fan, J. Li, X. Li, Y. H. Zhong, and J. W. Cao, Sci. China-Phys. Mech. Astron. 62, 969512 (2019), arXiv: 1811.01380.

    Article  Google Scholar 

  33. M. Llorens-Monteagudo, A. Torres-Forné, J. A. Font, and A. Marquina, Class. Quantum Grav. 36, 075005 (2019), arXiv: 1811.03867.

    Article  ADS  Google Scholar 

  34. M. Razzano, and E. Cuoco, Class. Quantum Grav. 35, 095016 (2018), arXiv: 1803.09933.

    Article  ADS  Google Scholar 

  35. H. Shen, D. George, E. A. Huerta, and Z. Z. Zhao, in Denoising gravitational waves with enhanced deep recurrent denoising autoencoders: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, New York, 2019), pp. 3237–3241.

    Book  Google Scholar 

  36. M. Cavaglia, K. Staats, and T. Gill, CiCP 25, (2019).

  37. A. Torres-Forné, E. Cuoco, A. Marquina, J. A. Font, and J. M. Ibáñez, Phys. Rev. D 98, 084013 (2018), arXiv: 1806.07329.

    Article  ADS  MathSciNet  Google Scholar 

  38. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT Press, Cambridge, 2016).

    MATH  Google Scholar 

  39. I. Datta, S. H. Chae, G. R. Bhatt, M. A. Tadayon, B. C. Li, Y. L. Yu, C. Park, J. Park, L. Y. Cao, D. N. Basov, J. Hone, and M. Lipson, arXiv: 1906.0459.

  40. M. Sotoudeh, and A. V. Thakur, arXiv: 1908.06214.

  41. J. Schmidt-Hieber, Ann. Statist. 48, 1875 (2020).

    Article  MathSciNet  Google Scholar 

  42. S. Loffe, and C. Szegedy, arXiv: 1502.03167.

  43. Y. F. Shen, Y. M. Shi, J. Zhang, and K. B. Letaief, arXiv: 1907.08487.

  44. D. P. Kingma, and J. Ba, arXiv: 1412.6980.

  45. J. S. Wang, J. K. Wang, M. H. Zeng, and J. J. Wang, in Prediction of internet traffic based on Elman neural network: Chinese Control and Decision Conference (IEEE, New York, 2009), pp. 1303–1307.

    Google Scholar 

  46. H. Y. Shen, D. George, E. A. Huerta, and Z. Z. Zhao, arXiv: 1711.09919.

  47. MATLAB Chinese Forum, MATLAB Neural Network 30 Case Analysis (Beijing University of Aeronautics and Astronautics Press, Beijing, 2010), pp. 170–171.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YuanHong Zhong or Jin Li.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11873001, 11725313, and 11690024), the Natural Science Foundation of Chongqing (Grant No. cstc2018jcyjAX0767), the National Key Research and Development Program of China (Grant No. 2017YFA0402600), the CAS International Partnership Program (Grant No. 114A11KYSB20160008), and the CAS Strategic Priority Research Program (Grant No. XDB23000000).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Zhong, Y., Feng, Y. et al. Machine learning for nanohertz gravitational wave detection and parameter estimation with pulsar timing array. Sci. China Phys. Mech. Astron. 63, 129511 (2020). https://doi.org/10.1007/s11433-020-1609-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1609-y

Navigation