Skip to main content
Log in

Deterministic measurement-device-independent quantum secret sharing

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Multiparty quantum communication ensures information-theoretic security for transmitting private information among multiuser networks. In principle, measurement-device-independent (MDI) techniques can close all detection loopholes while usually utilizing large amounts of quantum resources in basis reconciliation. We propose a three-party MDI quantum secret sharing (QSS) protocol that is secure against all detection attacks and does not require any basis reconciliation, avoiding the corresponding waste arising from it. The proposed protocol allows a sender to divide a private message into two parts and send those parts to different receivers in a deterministic way. The message can only be read through cooperation between the two receivers. Finally, we discuss the generalized extension of a multiparty QSS protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Wehner, D. Elkouss, and R. Hanson, Science 362, eaam9288 (2018).

    Google Scholar 

  2. G.-L. Long, F.-G. Deng, C. Wang, X.-H. Li, K. Wen, and W.-Y. Wang, Fron. Phys. China 2, 251 (2007).

    Google Scholar 

  3. W. Qin, and F. Non, Phys. Rev. A 93, 032337 (2016), arXiv: 1512.06487.

    ADS  Google Scholar 

  4. T. Shang, Y. Tang, R. Chen, and J. Liu, Quantum Eng. 2, e32 (2020).

    Google Scholar 

  5. T. Li, and G. L. Long, New J. Phys. 22, 063017 (2020).

    ADS  MathSciNet  Google Scholar 

  6. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002), arXiv: quant-ph/0101098.

    ADS  Google Scholar 

  7. Z.-X. Cui, W. Zhong, L. Zhou, and Y.-B. Sheng, Sci. China-Phys. Mech. Astron. 62, 110311 (2019).

    ADS  Google Scholar 

  8. Y. Zhang, and Q. Ni, Quantum Eng. 2, e31 (2020).

    Google Scholar 

  9. Y. Guo, B. H. Liu, C. F. Li, and G. C. Guo, Adv. Quantum Technol. 2, 1900011 (2019).

    Google Scholar 

  10. G. L. Long, and X. S. Liu, Phys. Rev. A 65, 032302 (2002), arXiv: quant-ph/0012056.

    ADS  Google Scholar 

  11. C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, Phys. Rev. A 71, 044305 (2005).

    ADS  Google Scholar 

  12. J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, Light Sci. Appl. 5, e16144 (2016), arXiv: 1503.00451.

    Google Scholar 

  13. W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, Phys. Rev. Lett. 118, 220501 (2017), arXiv: 1609.09184.

    ADS  Google Scholar 

  14. S.-S. Chen, L. Zhou, W. Zhong, and Y.-B. Sheng, Sci. China-Phys. Mech. Astron. 61, 090312 (2018).

    Google Scholar 

  15. L. Zhou, Y. B. Sheng, and G. L. Long, Sci. Bull. 65, 12 (2020).

    Google Scholar 

  16. M. Hillery, V. Bužek, and A. Berthiaume, Phys. Rev. A 59, 1829 (1999), arXiv: quant-ph/9806063.

    ADS  MathSciNet  Google Scholar 

  17. R. Cleve, D. Gottesman, and H. K. Lo, Phys. Rev. Lett. 83, 648 (1999), arXiv: quant-ph/9901025.

    ADS  Google Scholar 

  18. W. Tittel, H. Zbinden, and N. Gisin, Phys. Rev. A 63, 042301 (2001).

    ADS  Google Scholar 

  19. Y. A. Chen, A. N. Zhang, Z. Zhao, X. Q. Zhou, C. Y. Lu, C. Z. Peng, T. Yang, and J. W. Pan, Phys. Rev. Lett. 95, 200502 (2005), arXiv: quant-ph/0502131.

    ADS  Google Scholar 

  20. T. Gao, F.-L. Yan, and Z.-X. Wang, J. Phys. A: Math. Theor. 38, 5761 (2005).

    ADS  Google Scholar 

  21. T. Gao, F.-L. Yan, and Z.-X. Wang, Chin. Phys. 14, 893 (2005), arXiv: quant-ph/0403155.

    Google Scholar 

  22. H. Lu, Z. Zhang, L. K. Chen, Z. D. Li, C. Liu, L. Li, N. L. Liu, X. Ma, Y. A. Chen, and J. W. Pan, Phys. Rev. Lett. 117, 030501 (2016), arXiv: 1604.08093.

    ADS  Google Scholar 

  23. C. H. Bennett, and G. Brassard, Theor. Comput. Sci. 560, 7 (2014).

    Google Scholar 

  24. H. K. Lo, M. Curty, and K. Tamaki, Nat. Photon. 8, 595 (2014), arXiv: 1505.05303.

    ADS  Google Scholar 

  25. R. Qi, Z. Sun, Z. Lin, P. Niu, W. Hao, L. Song, Q. Huang, J. Gao, L. Yin, and G. L. Long, Light Sci. Appl. 8, 22 (2019), arXiv: 1810.11806.

    ADS  Google Scholar 

  26. D. J. Lum, J. C. Howell, M. S. Allman, T. Gerrits, V. B. Verma, S. W. Nam, C. Lupo, and S. Lloyd, Phys. Rev. A 94, 022315 (2016), arXiv: 1605.06556.

    ADS  Google Scholar 

  27. J. H. Shapiro, D. M. Boroson, P. B. Dixon, M. E. Grein, and S. A. Hamilton, J. Opt. Soc. Am.B 36, B41 (2019).

    Google Scholar 

  28. J. Wu, Z. Lin, L. Yin, and G.-L. Long, Quantum Eng. 1, e26 (2019).

    Google Scholar 

  29. F. Massa, A. Moqanaki, Baumeler, F. Del Santo, J. A. Kettlewell, B. Dakić, and P. Walther, Adv. Quantum Tech. 2, 1900050 (2019).

    Google Scholar 

  30. Y. L. Tang, H. L. Yin, Q. Zhao, H. Liu, X. X. Sun, M. Q. Huang, W. J. Zhang, S. J. Chen, L. Zhang, L. X. You, Z. Wang, Y. Liu, C. Y. Lu, X. Jiang, X. Ma, Q. Zhang, T. Y. Chen, and J. W. Pan, Phys. Rev. X 6, 011024 (2016), arXiv: 1509.08389.

    Google Scholar 

  31. A. Shamir, Commun. ACM 22, 612 (1979).

    Google Scholar 

  32. G. Blakley, Proc. AFIPS 1979 Nat. Computer Conf. 48, 313 (1979).

    Google Scholar 

  33. A. Karlsson, M. Koashi, and N. Imoto, Phys. Rev. A 59, 162 (1999).

    ADS  Google Scholar 

  34. L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, Phys. Rev. A 69, 052307 (2004), arXiv: quant-ph/0405179.

    ADS  Google Scholar 

  35. Y. Li, K. Zhang, and K. Peng, Phys. Lett. A 324, 420 (2004).

    ADS  MathSciNet  Google Scholar 

  36. P. Xue, K. Wang, and X. Wang, Sci. Rep. 7, 45928 (2017).

    ADS  Google Scholar 

  37. Z. Zhang, Y. Li, and Z. Man, Phys. Rev. A 71, 044301 (2005), arXiv: quant-ph/0412203.

    ADS  MathSciNet  Google Scholar 

  38. Z. J. Zhang, Phys. Lett. A 342, 60 (2005), arXiv: quant-ph/0403221.

    ADS  Google Scholar 

  39. F. G. Deng, X. H. Li, H. Y. Zhou, and Z. Zhang, Phys. Rev. A 72, 044302 (2005), arXiv: quant-ph/0506194.

    ADS  Google Scholar 

  40. X. Yang, K. Wei, H. Ma, H. Liu, Z. Yin, Z. Cao, and L. Wu, Sci. Rep. 8, 5728 (2018).

    ADS  Google Scholar 

  41. C. Y. Huang, N. Lambert, C. M. Li, Y. T. Lu, and F. Nori, Phys. Rev. A 99, 012302 (2019), arXiv: 1812.03251.

    ADS  Google Scholar 

  42. T. Tyc, and B. C. Sanders, Phys. Rev. A 65, 042310 (2002), arXiv: quant-ph/0107074.

    ADS  Google Scholar 

  43. Y. Xiang, I. Kogias, G. Adesso, and Q. He, Phys. Rev. A 95, 010101 (2017), arXiv: 1603.08173.

    ADS  Google Scholar 

  44. I. Kogias, Y. Xiang, Q. He, and G. Adesso, Phys. Rev. A 95, 012315 (2017), arXiv: 1603.03224.

    ADS  Google Scholar 

  45. M. Habibidavijani, and B. C. Sanders, New J. Phys. 21, 113023 (2019).

    MathSciNet  Google Scholar 

  46. H. K. Lo, H. F. Chau, and M. Ardehali, J Cryptology 18, 133 (2005).

    MathSciNet  Google Scholar 

  47. F. G. Deng, G. L. Long, and X. S. Liu, Phys. Rev. A 68, 042317 (2003), arXiv: quant-ph/0308173.

    ADS  Google Scholar 

  48. F. G. Deng, and G. L. Long, Phys. Rev. A 69, 052319 (2004), arXiv: quant-ph/0405177.

    ADS  Google Scholar 

  49. M. Lucamarini, and S. Mancini, Phys. Rev. Lett. 94, 140501 (2005), arXiv: quant-ph/0405083.

    ADS  Google Scholar 

  50. V. Lipinska, G. Murta, J. Ribeiro, and S. Wehner, Phys. Rev. A 101, 032332 (2020), arXiv: 1911.09470.

    ADS  MathSciNet  Google Scholar 

  51. X. Wu, Y. Wang, and D. Huang, Phys. Rev. A 101, 022301 (2020).

    ADS  Google Scholar 

  52. H. K. Lo, M. Curty, and B. Qi, Phys. Rev. Lett. 108, 130503 (2012), arXiv: 1109.1473.

    ADS  Google Scholar 

  53. S. L. Braunstein, and S. Pirandola, Phys. Rev. Lett. 108, 130502 (2012), arXiv: 1109.2330.

    ADS  Google Scholar 

  54. P. H. Niu, Z. R. Zhou, Z. S. Lin, Y. B. Sheng, L. G. Yin, and G. L. Long, Sci. Bull. 63, 1345 (2018).

    Google Scholar 

  55. Z. R. Zhou, Y. B. Sheng, P. H. Niu, L. G. Yin, G. L. Long, and L. Hanzo, Sci. China-Phys. Mech. Astron. 63, 230362 (2020), arXiv: 1805.07228.

    Google Scholar 

  56. Z. Gao, T. Li, and Z. Li, Europhys. Lett. 125, 40004 (2019).

    ADS  Google Scholar 

  57. Y. Fu, H. L. Yin, T. Y. Chen, and Z. B. Chen, Phys. Rev. Lett. 114, 090501 (2015), arXiv: 1412.0832.

    ADS  Google Scholar 

  58. Y. Wu, J. Zhou, X. Gong, Y. Guo, Z. M. Zhang, and G. He, Phys. Rev. A 93, 022325 (2016), arXiv: 1512.03876.

    ADS  Google Scholar 

  59. Y. Zhou, J. Yu, Z. Yan, X. Jia, J. Zhang, C. Xie, and K. Peng, Phys. Rev. Lett. 121, 150502 (2018).

    ADS  Google Scholar 

  60. Y. Wang, C. Tian, Q. Su, M. Wang, and X. Su, Sci. China Inf. Sci. 62, 72501 (2019).

    MathSciNet  Google Scholar 

  61. C. Ottaviani, C. Lupo, R. Laurenza, and S. Pirandola, Commun. Phys. 2, 1 (2019).

    Google Scholar 

  62. S. Roy, and S. Mukhopadhyay, Phys. Rev. A 100, 012319 (2019), arXiv: 1903.11836.

    ADS  MathSciNet  Google Scholar 

  63. J. Pan, and A. Zeilinger, Phys. Rev. A 57, 2208 (1998).

    ADS  MathSciNet  Google Scholar 

  64. C. Y. Lu, T. Yang, and J. W. Pan, Phys. Rev. Lett. 103, 020501 (2009).

    ADS  Google Scholar 

  65. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, Rev. Mod. Phys. 79, 135 (2007), arXiv: quant-ph/0512071.

    ADS  Google Scholar 

  66. D. E. Chang, V. Vuletic, and M. D. Lukin, Nat. Photon. 8, 685 (2014).

    ADS  Google Scholar 

  67. T. Li, A. Mranowicz, X. Hu, K. Xia, and F. Nori, Phys. Rev. A 97, 062318 (2018), arXiv: 1803.05626.

    ADS  Google Scholar 

  68. G. Z. Song, E. Munro, W. Nie, L. C. Kwek, F. G. Deng, and G. L. Long, Phys. Rev. A 98, 023814 (2018), arXiv: 1805.01590.

    ADS  Google Scholar 

  69. J. Qian, X. L. Feng, and S. Q. Gong, Phys. Rev. A 72, 052308 (2005).

    ADS  Google Scholar 

  70. Y. Xia, Y. H. Kang, and P. M. Lu, J. Opt. Soc. Am. B 31, 2077 (2014).

    ADS  Google Scholar 

  71. T. Li, A. Miranowicz, K. Xia, and F. Nori, Phys. Rev. A 100, 052302 (2019), arXiv: 1811.02711.

    ADS  Google Scholar 

  72. A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic Publishers, Dordrecht, 1993).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Li or ZhenHua Li.

Additional information

This work was supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK20180461), and the National Natural Science Foundation of China (Grant No. 11904171).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Li, T. & Li, Z. Deterministic measurement-device-independent quantum secret sharing. Sci. China Phys. Mech. Astron. 63, 120311 (2020). https://doi.org/10.1007/s11433-020-1603-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1603-7

Keywords

Navigation