Experimental demonstration of switching entangled photons based on the Rydberg blockade effect

Abstract

The long-range interaction between Rydberg-excited atoms endows a medium with large optical nonlinearity. Here, we demonstrate an optical switch to operate on a single photon from an entangled photon pair under a Rydberg electromagnetically induced transparency configuration. With the presence of the Rydberg blockade effect, we switch on a gate field to make the atomic medium nontransparent thereby absorbing the single photon emitted from another atomic ensemble via the spontaneous four-wave mixing process. In contrast to the case without a gate field, more than 50% of the photons sent to the switch are blocked, and finally achieve an effective single-photon switch. There are on average 1–2 gate photons per effective blockade sphere in one gate pulse. This switching effect on a single entangled photon depends on the principal quantum number and the photon number of the gate field. Our experimental progress is significant in the quantum information process especially in controlling the interaction between Rydberg atoms and entangled photon pairs.

This is a preview of subscription content, log in to check access.

References

  1. 1

    J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, Phys. Rev. Lett. 78, 3221 (1997), arXiv: quant-ph/9611017.

    ADS  Article  Google Scholar 

  2. 2

    J. L. O’Brien, A. Furusawa, and J. Vučković, Nat. Photon. 3, 687 (2009), arXiv: 1003.3928.

    ADS  Article  Google Scholar 

  3. 3

    H. J. Caulfield, and S. Dolev, Nat. Photon. 4, 261 (2010).

    Article  Google Scholar 

  4. 4

    F. Wang, M. X. Luo, G. Xu, X. B. Chen, and Y. X. Yang, Sci. China-Phys. Mech. Astron. 61, 060312 (2018).

    Article  Google Scholar 

  5. 5

    M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010), arXiv: 0909.4777.

    ADS  Article  Google Scholar 

  6. 6

    H. J. Kimble, Nature 453, 1023 (2008), arXiv: 0806.4195.

    ADS  Article  Google Scholar 

  7. 7

    Z. X. Cui, W. Zhong, L. Zhou, and Y. B. Sheng, Sci. China-Phys. Mech. Astron. 62, 110311 (2019).

    ADS  Article  Google Scholar 

  8. 8

    X. C. Xie, Sci. China-Phys. Mech. Astron. 63, 230361 (2020).

    ADS  Article  Google Scholar 

  9. 9

    P. Kómár, E. M. Kessler, M. Bishof, L. Jiang, A. S. Sørensen, J. Ye, and M. D. Lukin, Nat. Phys. 10, 582 (2014), arXiv: 1310.6045.

    Article  Google Scholar 

  10. 10

    D. O’Shea, C. Junge, J. Volz, and A. Rauschenbeutel, Phys. Rev. Lett. 111, 193601 (2013), arXiv: 1306.1357.

    ADS  Article  Google Scholar 

  11. 11

    M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, Phys. Rev. Lett. 102, 203902 (2009), arXiv: 0901.0336.

    ADS  Article  Google Scholar 

  12. 12

    W. Chen, K. M. Beck, R. Bucker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletic, Science 341, 768 (2013), arXiv: 1401.3194.

    ADS  Article  Google Scholar 

  13. 13

    T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, Nat. Photon. 6, 605 (2012), arXiv: 1111.2915.

    ADS  Article  Google Scholar 

  14. 14

    J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, Nature 460, 76 (2009).

    ADS  Article  Google Scholar 

  15. 15

    D. Comparat, and P. Pillet, J. Opt. Soc. Am. B 27, A208 (2010), arXiv: 1006.0742.

    ADS  Article  Google Scholar 

  16. 16

    D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Cote, and M. D. Lukin, Phys. Rev. Lett. 85, 2208 (2000), arXiv: quant-ph/0004038.

    ADS  Article  Google Scholar 

  17. 17

    M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 87, 037901 (2001), arXiv: quant-ph/0011028.

    ADS  Article  Google Scholar 

  18. 18

    D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Côté, E. E. Eyler, and P. L. Gould, Phys. Rev. Lett. 93, 063001 (2004), arXiv: physics/0402113.

    ADS  Article  Google Scholar 

  19. 19

    K. Singer, M. Reetz-Lamour, T. Amthor, L. G. Marcassa, and M. Weidemüller, Phys. Rev. Lett. 93, 163001 (2004), arXiv: physics/0404075.

    ADS  Article  Google Scholar 

  20. 20

    E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, Nat. Phys. 5, 110 (2009), arXiv: 0805.0758.

    Article  Google Scholar 

  21. 21

    A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, Nat. Phys. 5, 115 (2009), arXiv: 0810.2960.

    Article  Google Scholar 

  22. 22

    R. Heidemann, U. Raitzsch, V. Bendkowsky, B. Butscher, R. Löw, L. Santos, and T. Pfau, Phys. Rev. Lett. 99, 163601 (2007), arXiv: quant-ph/0701120.

    ADS  Article  Google Scholar 

  23. 23

    J. Zeiher, P. Schauß, S. Hild, T. Macrì, I. Bloch, and C. Gross, Phys. Rev. X 5, 031015 (2015).

    Google Scholar 

  24. 24

    H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macrì, T. Lahaye, and A. Browaeys, Nature 534, 667 (2016), arXiv: 1509.04543.

    ADS  Article  Google Scholar 

  25. 25

    H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, Nature 551, 579 (2017), arXiv: 1707.04344.

    ADS  Article  Google Scholar 

  26. 26

    P. Schauß, M. Cheneau, M. Endres, T. Fukuhara, S. Hild, A. Omran, T. Pohl, C. Gross, S. Kuhr, and I. Bloch, Nature 491, 87 (2012), arXiv: 1209.0944.

    ADS  Article  Google Scholar 

  27. 27

    A. Schwarzkopf, R. E. Sapiro, and G. Raithel, Phys. Rev. Lett. 107, 103001 (2011).

    ADS  Article  Google Scholar 

  28. 28

    P. Schauß, J. Zeiher, T. Fukuhara, S. Hild, M. Cheneau, T. Macri, T. Pohl, I. Bloch, and C. Gross, Science 347, 1455 (2015).

    ADS  Article  Google Scholar 

  29. 29

    J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, Phys. Rev. Lett. 105, 193603 (2010), arXiv: 1006.4087.

    ADS  Article  Google Scholar 

  30. 30

    Y. O. Dudin, and A. Kuzmich, Science 336, 887 (2012).

    ADS  Article  Google Scholar 

  31. 31

    T. Peyronel, O. Firstenberg, Q. Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, Nature 488, 57 (2012).

    ADS  Article  Google Scholar 

  32. 32

    D. Maxwell, D. J. Szwer, D. Paredes-Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, Phys. Rev. Lett. 110, 103001 (2013), arXiv: 1207.6007.

    ADS  Article  Google Scholar 

  33. 33

    C. Tresp, P. Bienias, S. Weber, H. Gorniaczyk, I. Mirgorodskiy, H. P. Büchler, and S. Hofferberth, Phys. Rev. Lett. 115, 083602 (2015), arXiv: 1505.03723.

    ADS  Article  Google Scholar 

  34. 34

    O. Firstenberg, C. S. Adams, and S. Hofferberth, J. Phys. B-At. Mol. Opt. Phys. 49, 152003 (2016), arXiv: 1602.06117.

    ADS  Article  Google Scholar 

  35. 35

    C. R. Murray, and T. Pohl, Phys. Rev. X 7, 031007 (2017), arXiv: 1702.03763.

    Google Scholar 

  36. 36

    M. Robert-de-Saint-Vincent, C. S. Hofmann, H. Schempp, G. Günter, S. Whitlock, and M. Weidemüller, Phys. Rev. Lett. 110, 045004 (2013), arXiv: 1209.4728.

    ADS  Article  Google Scholar 

  37. 37

    D. Tiarks, S. Schmidt-Eberle, T. Stolz, G. Rempe, and S. Dürr, Nat. Phys. 15, 124 (2019), arXiv: 1807.05795.

    Article  Google Scholar 

  38. 38

    D. Tiarks, S. Baur, K. Schneider, S. Dürr, and G. Rempe, Phys. Rev. Lett. 113, 053602 (2014).

    ADS  Article  Google Scholar 

  39. 39

    H. Gorniaczyk, C. Tresp, J. Schmidt, H. Fedder, and S. Hofferberth, Phys. Rev. Lett. 113, 053601 (2014), arXiv: 1404.2876.

    ADS  Article  Google Scholar 

  40. 40

    S. Baur, D. Tiarks, G. Rempe, and S. Dürr, Phys. Rev. Lett. 112, 073901 (2014), arXiv: 1307.3509.

    ADS  Article  Google Scholar 

  41. 41

    O. Firstenberg, T. Peyronel, Q. Y. Liang, A. V. Gorshkov, M. D. Lukin, and V. Vuletić, Nature 502, 71 (2013).

    ADS  Article  Google Scholar 

  42. 42

    D. Petrosyan, J. Otterbach, and M. Fleischhauer, Phys. Rev. Lett. 107, 213601 (2011), arXiv: 1106.1360.

    ADS  Article  Google Scholar 

  43. 43

    D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. H. Zurek, T. F. Havel, and S. S. Somaroo, Phys. Rev. Lett. 81, 2152 (1998), arXiv: quant-ph/9802018.

    ADS  Article  Google Scholar 

  44. 44

    A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, and M. D. Lukin, Phys. Rev. Lett. 107, 133602 (2011), arXiv: 1103.3700.

    ADS  Article  Google Scholar 

  45. 45

    M. Khazali, K. Heshami, and C. Simon, Phys. Rev. A 91, 030301 (2015), arXiv: 1407.7510.

    ADS  Article  Google Scholar 

  46. 46

    A. C. J. Wade, M. Mattioli, and K. Mølmer, Phys. Rev. A 94, 053830 (2016), arXiv: 1605.05132.

    ADS  Article  Google Scholar 

  47. 47

    Y. Sun, and P. X. Chen, Optica 5, 1492 (2018), arXiv: 1805.08683.

    ADS  Article  Google Scholar 

  48. 48

    J. B. Balewski, A. T. Krupp, A. Gaj, S. Hofferberth, R. Löw, and T. Pfau, New J. Phys. 16, 063012 (2014), arXiv: 1312.6346.

    ADS  Article  Google Scholar 

  49. 49

    N. Šibalić, J. D. Pritchard, C. S. Adams, and K. J. Weatherill, Comput. Phys. Commun. 220, 319 (2017), arXiv: 1612.05529.

    ADS  Article  Google Scholar 

  50. 50

    H. Levine, A. Keesling, A. Omran, H. Bernien, S. Schwartz, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, Phys. Rev. Lett. 121, 123603 (2018), arXiv: 1806.04682.

    ADS  Article  Google Scholar 

  51. 51

    S. Du, J. Wen, and M. H. Rubin, J. Opt. Soc. Am. B 25, C98 (2008), arXiv: 0804.3981.

    Article  Google Scholar 

  52. 52

    K. Liao, H. Yan, J. He, S. Du, Z. M. Zhang, and S. L. Zhu, Phys. Rev. Lett. 112, 243602 (2014), arXiv: 1402.2530.

    ADS  Article  Google Scholar 

  53. 53

    D. S. Ding, K. Wang, W. Zhang, S. Shi, M. X. Dong, Y. C. Yu, Z. Y. Zhou, B. S. Shi, and G. C. Guo, Phys. Rev. A 94, 052326 (2016), arXiv: 1512.02772.

    ADS  Article  Google Scholar 

  54. 54

    W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Y. Li, Z. Y. Zhou, B. S. Shi, and G. C. Guo, Nat. Commun. 7, 13514 (2016).

    ADS  Article  Google Scholar 

  55. 55

    Y. C. Yu, D. S. Ding, M. X. Dong, S. Shi, W. Zhang, and B. S. Shi, Phys. Rev. A 97, 043809 (2018).

    ADS  Article  Google Scholar 

  56. 56

    J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, Phys. Rev. Lett. 105, 193603 (2010), arXiv: 1006.4087.

    ADS  Article  Google Scholar 

  57. 57

    S. Zhang, J. F. Chen, C. Liu, M. M. T. Loy, G. K. L. Wong, and S. Du, Phys. Rev. Lett. 106, 243602 (2011).

    ADS  Article  Google Scholar 

  58. 58

    D. S. Ding, Y. K. Jiang, W. Zhang, Z. Y. Zhou, B. S. Shi, and G. C. Guo, Phys. Rev. Lett. 114, 093601 (2015).

    ADS  Article  Google Scholar 

  59. 59

    D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, Phys. Rev. A 64, 052312 (2001), arXiv: quant-ph/0103121.

    ADS  Article  Google Scholar 

  60. 60

    K. Wang, W. Zhang, Z. Y. Zhou, M. X. Dong, S. Shi, S. L. Liu, D. S. Ding, and B. S. Shi, Chin. Opt. Lett. 15, 060201 (2017).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Dong-Sheng Ding or Bao-Sen Shi.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304800), the National Natural Science Foundation of China (Grant Nos. 61525504, 61722510, 61435011, 11174271, 61275115, and 11604322), the Anhui Initiative in Quantum Information Technologies (Grant No. AHY020200), and the Youth Innovation Pro motion Association of Chinese Academy of Sciences (Grant No. 2018490). The authors thank Prof. Lin Li from Huazhong University of Science and Technology and Prof. Yuan Sun from National University of Defense Technology for valued discussions and critical reading our manuscript.

Supporting Information

The supporting information is available online at phys.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Dong, M., Ye, Y. et al. Experimental demonstration of switching entangled photons based on the Rydberg blockade effect. Sci. China Phys. Mech. Astron. 63, 110312 (2020). https://doi.org/10.1007/s11433-020-1602-1

Download citation

  • Rydberg blockade
  • entangled photon
  • quantum switch