Skip to main content
Log in

Identification of surface nanobubbles and resolving their size-dependent stiffness

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We report a comparative investigation of the topographic features and nanomechanical responses of surface nanobubbles, polymeric nanodrops, and solid microparticles submerged in water and probed by atomic force microscopy in different operating modes. We show that these microscopic objects exhibit similar topographies, either hemispherical or hemiellipsoidal, in the standard tapping mode, and thus are difficult to distinguish. However, distinct differences, caused not only by their different mechanical properties but also by different cantilever tip-sample mechanical interactions that are affected by tip wettability, were observed in successive topographic imaging with controlled scanning forces and the nanoindentation tests, allowing for the identification of surface nanobubbles. Based on the indentation force-distance curves, we further extrapolated the stiffness of surface nanobubbles spanning a wide range of sizes and then developed a simple theoretical model to explain this size dependence. We also demonstrate how size-dependent stiffness can be used to determine the surface tension of nanobubbles, which was found to be much lower than the bulk value of water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. L. Hornyak, H. F. Tibbals, J. Dutta, and J. J. Moore, Introduction to Nanoscience and Nanotechnology (CRC Press, Boca Raton, 2008).

    Google Scholar 

  2. M. N. Gao, X. F. Huang, and Y. P. Zhao, Sci. China Tech. Sci. 61, 949 (2018).

    Google Scholar 

  3. D. Lohse, and X. H. Zhang, Rev. Mod. Phys. 87, 981 (2015).

    ADS  Google Scholar 

  4. V. S. J. Craig, Soft Matter 7, 40 (2011).

    MathSciNet  ADS  Google Scholar 

  5. J. R. T. Seddon, and D. Lohse, J. Phys.-Condens. Matter 23, 133001 (2011).

    ADS  Google Scholar 

  6. C. Cottin-Bizonne, J. L. Barrat, L. Bocquet, and E. Charlaix, Nat. Mater. 2, 237 (2003).

    ADS  Google Scholar 

  7. S. Granick, Y. X. Zhu, and H. Lee, Nat. Mater. 2, 221 (2003).

    ADS  Google Scholar 

  8. Y. L. Wang, and B. Bhushan, Soft Matter 6, 29 (2010).

    ADS  Google Scholar 

  9. L. B. Gao, G. X. Ni, Y. P. Liu, B. Liu, A. H. C. Neto, and K. P. Loh, Nature 505, 190 (2014).

    ADS  Google Scholar 

  10. S. Calgaroto, A. Azevedo, and J. Rubio, Int. J. Mineral Process. 137, 64 (2015).

    Google Scholar 

  11. S. Calgaroto, K. Q. Wilberg, and J. Rubio, Miner. Eng. 60, 33 (2014).

    Google Scholar 

  12. T. Lyu, S. B. Wu, R. J. G. Mortimer, and G. Pan, Environ. Sci. Technol. 53, 7175 (2019).

    ADS  Google Scholar 

  13. W. Xiao, S. Ke, N. N. Quan, L. Zhou, J. Wang, L. J. Zhang, Y. M. Dong, W. Q. Qin, G. Z. Qiu, and J. Hu, Langmuir 34, 6217 (2018).

    Google Scholar 

  14. J. L. Parker, P. M. Claesson, and P. Attard, J. Phys. Chem. 98, 8468 (1994).

    Google Scholar 

  15. S. T. Lou, Z. Q. Ouyang, Y. Zhang, X. J. Li, J. Hu, M. Q. Li, and F. J. Yang, J. Vac. Sci. Technol. B 18, 2573 (2000).

    Google Scholar 

  16. N. Ishida, T. Inoue, M. Miyahara, and K. Higashitani, Langmuir 16, 6377 (2000).

    Google Scholar 

  17. X. H. Zhang, A. Khan, and W. A. Ducker, Phys. Rev. Lett. 98, 136101 (2007).

    ADS  Google Scholar 

  18. X. H. Zhang, A. Quinn, and W. A. Ducker, Langmuir 24, 4756 (2008).

    Google Scholar 

  19. J. Martinez, and P. Stroeve, J. Phys. Chem. B 111, 14069 (2007).

    Google Scholar 

  20. A. Carambassis, L. C. Jonker, P. Attard, and M. W. Rutland, Phys. Rev. Lett. 80, 5357 (1998).

    ADS  Google Scholar 

  21. J. W. G. Tyrrell, and P. Attard, Phys. Rev. Lett. 87, 176104 (2001).

    ADS  Google Scholar 

  22. L. J. Zhang, Y. Zhang, X. H. Zhang, Z. X. Li, G. X. Shen, M. Ye, C. H. Fan, H. P. Fang, and J. Hu, Langmuir 22, 8109 (2006).

    Google Scholar 

  23. X. Zhang, M. H. Uddin, H. J. Yang, G. Toikka, W. Ducker, and N. Maeda, Langmuir 28, 10471 (2012).

    Google Scholar 

  24. M. Switkes, and J. W. Ruberti, Appl. Phys. Lett. 84, 4759 (2004).

    ADS  Google Scholar 

  25. L. J. Zhang, B. Y. Zhao, L. Xue, Z. Guo, Y. M. Dong, H. P. Fang, R. Z. Tai, and J. Hu, J. Synchrot. Rad. 20, 413 (2013).

    Google Scholar 

  26. C. U. Chan, and C. D. Ohl, Phys. Rev. Lett. 109, 174501 (2012).

    ADS  Google Scholar 

  27. S. Karpitschka, E. Dietrich, J. R. T. Seddon, H. J. W. Zandvliet, D. Lohse, and H. Riegler, Phys. Rev. Lett. 109, 066102 (2012).

    ADS  Google Scholar 

  28. D. Seo, S. R. German, T. L. Mega, and W. A. Ducker, J. Phys. Chem. C 119, 14262 (2015).

    Google Scholar 

  29. P. Attard, Eur. Phys. J. Spec. Top. 1, 1 (2013).

    Google Scholar 

  30. S. Ljunggren, and J. C. Eriksson, Colloid. Surf. A-Physicochem. Eng. Aspects 129-130, 151 (1997).

    Google Scholar 

  31. D. Lohse, and X. H. Zhang, Phys. Rev. E 91, 5 (2015).

    Google Scholar 

  32. H. J. An, G. M. Liu, and V. S. J. Craig, Adv. Colloid Interface Sci. 222, 9 (2015).

    Google Scholar 

  33. R. P. Berkelaar, E. Dietrich, G. A. M. Kip, E. S. Kooij, H. J. W. Zandvliet, and D. Lohse, Soft Matter 10, 4947 (2014).

    ADS  Google Scholar 

  34. C. U. Chan, L. Chen, M. Arora, and C. D. Ohl, Phys. Rev. Lett. 114, 114505 (2015).

    ADS  Google Scholar 

  35. N. Hain, S. Handschuh-Wang, D. Wesner, S. I. Druzhinin, and H. Schönherr, J. Colloid Interface Sci. 547, 162 (2019).

    ADS  Google Scholar 

  36. N. Hain, D. Wesner, S. I. Druzhinin, and H. Schönherr, Langmuir 32, 11155 (2016).

    Google Scholar 

  37. H. J. An, B. H. Tan, and C. D. Ohl, Langmuir 32, 12710 (2016).

    Google Scholar 

  38. X. Y. Wang, B. Y. Zhao, J. Hu, S. Wang, R. Z. Tai, X. Y. Gao, and L. J. Zhang, Phys. Chem. Chem. Phys. 19, 1108 (2017).

    Google Scholar 

  39. C. W. Yang, Y. H. Lu, and I. S. Hwang, J. Phys.-Condes. Matter 25, 184010 (2013).

    ADS  Google Scholar 

  40. B. Y. Zhao, Y. Song, S. Wang, B. Dai, L. J. Zhang, Y. M. Dong, J. H. Lü, and J. Hu, Soft Matter 9, 8837 (2013).

    ADS  Google Scholar 

  41. L. M. Zhou, S. Wang, J. Qiu, L. Wang, X. Y. Wang, B. Li, L. J. Zhang, and J. Hu, Chin. Phys. B 26, 106803 (2017).

    ADS  Google Scholar 

  42. P. Attard, and S. J. Miklavcic, Langmuir 17, 8217 (2001).

    Google Scholar 

  43. W. Walczyk, and H. Schönherr, Langmuir 30, 11955 (2014).

    Google Scholar 

  44. W. Walczyk, and H. Schönherr, Langmuir 30, 7112 (2014).

    Google Scholar 

  45. B. Y. Zhao, X. Y. Wang, S. Wang, R. Z. Tai, L. J. Zhang, and J. Hu, Soft Matter 12, 3303 (2016).

    ADS  Google Scholar 

  46. G. Q. Liu, M. Hirtz, H. Fuchs, and Z. J. Zheng, Small 15, 1900564 (2019).

    Google Scholar 

  47. T. Uchida, S. Oshita, M. Ohmori, T. Tsuno, K. Soejima, S. Shinozaki, Y. Take, and K. Mitsuda, Nanoscale Res. Lett. 6, 1 (2011).

    Google Scholar 

  48. D. J. Keller, and F. S. Franke, Surf. Sci. 294, 409 (1993).

    ADS  Google Scholar 

  49. B. Y. Zhao, S. Luo, E. Bonaccurso, G. K. Auernhammer, X. Deng, Z. G. Li, and L. Q. Chen, Phys. Rev. Lett. 123, 094501 (2019).

    ADS  Google Scholar 

  50. H. J. Butt, J. Colloid Interface Sci. 166, 109 (1994).

    ADS  Google Scholar 

  51. M. Preuss, and H. J. Butt, Int. J. Miner. Process. 56, 99 (1999).

    Google Scholar 

  52. X. H. Zhang, N. Maeda, and V. S. J. Craig, Langmuir 22, 5025 (2006).

    Google Scholar 

  53. D. Beaglehole, and H. K. Christenson, J. Phys. Chem. 96, 3395 (1992).

    Google Scholar 

  54. M. Binggeli, and C. M. Mate, Appl. Phys. Lett. 65, 415 (1994).

    ADS  Google Scholar 

  55. H. J. Butt, B. Cappella, and M. Kappl, Surf. Sci. Rep. 59, 1 (2005).

    ADS  Google Scholar 

  56. S. Wang, X. Y. Wang, B. Y. Zhao, L. Wang, J. Qiu, L. M. Zhou, Y. M. Dong, B. Li, J. H. Lü, Y. Wang, Y. Zhang, L. J. Zhang, and J. Hu, Langmuir 32, 11230 (2016).

    Google Scholar 

  57. Y. J. Sun, B. Akhremitchev, and G. C. Walker, Langmuir 20, 5837 (2004).

    Google Scholar 

  58. D. Raghavan, M. VanLandingham, X. Gu, and T. Nguyen, Langmuir 16, 9448 (2000).

    Google Scholar 

  59. R. C. Hibbeler, Mechanics of Materials, 10th ed. (Pearson Prentice Hall, London, 2016).

    Google Scholar 

  60. P. G. de Gennes, F. Brochard-Wyart, and D. Quere, Capillarity and Wetting Phenomena (Springer, New York, 2004).

    MATH  Google Scholar 

  61. S. Chandra, and C. T. Avedisian, Proc. R. Soc. Lond. A 432, 13 (1991).

    ADS  Google Scholar 

  62. J. H. Yang, Q. Z. Yuan, and Y. P. Zhao, Sci. China-Phys. Mech. Astron. 62, 124611 (2019).

    ADS  Google Scholar 

  63. P. Attard, arXiv: 1505.02217.

  64. M. P. Moody, and P. Attard, Phys. Rev. Lett. 91, 4 (2003).

    Google Scholar 

  65. Z. Guo, X. Wang, and X. Zhang, Langmuir 35, 8482 (2019).

    Google Scholar 

  66. R. C. Tolman, J. Chem. Phys. 17, 333 (1949).

    ADS  Google Scholar 

  67. M. P. Moody, and P. Attard, J. Chem. Phys. 115, 8967 (2001).

    ADS  Google Scholar 

  68. S. Kim, D. Kim, J. Kim, S. An, and W. Jhe, Phys. Rev. X 8, 041046 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LongQuan Chen.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 11772271), and the Sichuan Province Science Foundation for Youths (Grant No. 2016JQ0050). BinYu Zhao acknowledges the financial support from the National Natural Science Foundation of China (Grant No. 11802055). We acknowledge JianWei Guo and ShiJi Lin for stimulating discussion.

Supporting Information

The supporting information is available online at phys.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Y., Zhao, B., Mehrizi, A.A. et al. Identification of surface nanobubbles and resolving their size-dependent stiffness. Sci. China Phys. Mech. Astron. 63, 294614 (2020). https://doi.org/10.1007/s11433-020-1538-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1538-0

Keywords

PACS number(s)

Navigation