Nature-inspired surface topography: design and function

Abstract

Learning from nature has traditionally and continuously provided important insights to drive a paradigm shift in technology. In particular, recent studies show that many biological organisms exhibit spectacular surface topography such as shape, size, spatial organization, periodicity, interconnectivity, and hierarchy to endow them with the capability to adapt dynamically and responsively to a wide range of environments. More excitingly, in a broader perspective, these normally neglected topological features have the potential to fundamentally change the way of how engineering surface works, such as how fluid flows, how heat is transported, and how energy is generated, saved, and converted, to name a few. Thus, the design of nature-inspired surface topography for unique functions will spur new thinking and provide paradigm shift in the development of the new engineering surfaces. In this review, we first present a brief introduction to some insights extracted from nature. Then, we highlight recent progress in designing new surface topographies and demonstrate their applications in emerging areas including thermal-fluid transport, anti-icing, water harvesting, power generation, adhesive control, and soft robotics. Finally, we offer our perspectives on this emerging field, with the aim to stimulate new thinking on the development of next-generation of new materials and devices, and dramatically extend the boundaries of traditional engineering.

This is a preview of subscription content, log in to check access.

References

  1. 1

    M. A. Meyers, J. McKittrick, and P. Y. Chen, Science 339, 773 (2013).

    ADS  Google Scholar 

  2. 2

    U. G. K. Wegst, H. Bai, E. Saiz, A. P. Tomsia, and R. O. Ritchie, Nat. Mater. 14, 23 (2015).

    ADS  Google Scholar 

  3. 3

    P. Egan, R. Sinko, P. R. LeDuc, and S. Keten, Nat. Commun. 6, 7418 (2015).

    ADS  Google Scholar 

  4. 4

    Y. Zhao, Z. Xie, H. Gu, C. Zhu, and Z. Gu, Chem. Soc. Rev. 41, 3297 (2012).

    Google Scholar 

  5. 5

    D. W. Wood, P. M. Schulte, and S. Edition, Principles of Animal Physiology (Pearson Education Limited, New York, 1972), p. 1.

    Google Scholar 

  6. 6

    K. Autumn, M. Sitti, Y. A. Liang, A. M. Peattie, W. R. Hansen, S. Sponberg, T. W. Kenny, R. Fearing, J. N. Israelachvili, and R. J. Full, Proc. Natl. Acad. Sci. USA 99, 12252 (2002).

    ADS  Google Scholar 

  7. 7

    A. R. Parker, and C. R. Lawrence, Nature 414, 33 (2001).

    ADS  Google Scholar 

  8. 8

    R. Blossey, Nat. Mater. 2, 301 (2003).

    ADS  Google Scholar 

  9. 9

    L. Ren, and Y. Liang, The Introduction of Bionics (Science Press, Beijing, 2016), p. 1.

    Google Scholar 

  10. 10

    J. C. Wang, Harvey Lect. 81, 93 (1985).

    Google Scholar 

  11. 11

    C. Falbo, College Math. J. 36, 123 (2005).

    MathSciNet  Google Scholar 

  12. 12

    H. Chen, P. Zhang, L. Zhang, H. Liu, Y. Jiang, D. Zhang, Z. Han, and L. Jiang, Nature 532, 85 (2016).

    ADS  Google Scholar 

  13. 13

    S. Seok, C. D. Onal, K. J. Cho, R. J. Wood, D. Rus, and S. Kim, IEEE/ASME Trans. Mechatron. 18, 1485 (2013).

    Google Scholar 

  14. 14

    T. B. H. Schroeder, A. Guha, A. Lamoureux, G. VanRenterghem, D. Sept, M. Shtein, J. Yang, and M. Mayer, Nature 552, 214 (2017).

    ADS  Google Scholar 

  15. 15

    C. Neinhuis, and W. Barthlott, Ann. Bot. 79, 667 (1997).

    Google Scholar 

  16. 16

    H. J. Ensikat, P. Ditsche-Kuru, C. Neinhuis, and W. Barthlott, Beilstein J. Nanotechnol. 2, 152 (2011).

    Google Scholar 

  17. 17

    K. Autumn, A. Dittmore, D. Santos, M. Spenko, and M. Cutkosky, J. Exp. Biol. 209, 3569 (2006).

    Google Scholar 

  18. 18

    H. Gao, X. Wang, H. Yao, S. Gorb, and E. Arzt, Mech. Mater. 37, 275 (2005).

    Google Scholar 

  19. 19

    C. Wang, K. Sim, J. Chen, H. Kim, Z. Rao, Y. Li, W. Chen, J. Song, R. Verduzco, and C. Yu, Adv. Mater. 30, 1706695 (2018).

    Google Scholar 

  20. 20

    W. Wang, J. Y. Lee, H. Rodrigue, S. H. Song, W. S. Chu, and S. H. Ahn, Bioinspir. Biomim. 9, 046006 (2014).

    ADS  Google Scholar 

  21. 21

    Z. Jing, L. Qiao, H. Pan, Y. Yang, and W. Chen, Sci. China Inf. Sci. 60, 050201 (2017).

    Google Scholar 

  22. 22

    Q. Guo, E. Dai, X. Han, S. Xie, E. Chao, and Z. Chen, J. R. Soc. Interface 12, 20150598 (2015).

    Google Scholar 

  23. 23

    C. Xu, G. T. Stiubianu, and A. A. Gorodetsky, Science 359, 1495 (2018).

    ADS  Google Scholar 

  24. 24

    M. Vatankhah-Varnosfaderani, A. N. Keith, Y. Cong, H. Liang, M. Rosenthal, M. Sztucki, C. Clair, S. Magonov, D. A. Ivanov, A. V. Dobrynin, and S. S. Sheiko, Science 359, 1509 (2018).

    ADS  Google Scholar 

  25. 25

    R. Wen, Q. Li, W. Wang, B. Latour, C. H. Li, C. Li, Y. C. Lee, and R. Yang, Nano Energy 38, 59 (2017).

    ADS  Google Scholar 

  26. 26

    H. He, C. Qiu, L. Ye, X. Cai, X. Fan, M. Ke, F. Zhang, and Z. Liu, Nature 560, 61 (2018), arXiv: 1808.04647.

    ADS  Google Scholar 

  27. 27

    M. J. Kreder, J. Alvarenga, P. Kim, and J. Aizenberg, Nat. Rev. Mater. 1, 15003 (2016).

    ADS  Google Scholar 

  28. 28

    K. Liu, and L. Jiang, Annu. Rev. Mater. Res. 42, 231 (2012).

    ADS  Google Scholar 

  29. 29

    G. D. Bixler, and B. Bhushan, Soft Matter 8, 11271 (2012).

    ADS  Google Scholar 

  30. 30

    J. Li, Y. Hou, Y. Liu, C. Hao, M. Li, M. K. Chaudhury, S. Yao, and Z. Wang, Nat. Phys. 12, 606 (2016).

    Google Scholar 

  31. 31

    D. J. Preston, D. L. Mafra, N. Miljkovic, J. Kong, and E. N. Wang, Nano Lett. 15, 2902 (2015).

    ADS  Google Scholar 

  32. 32

    C. Hao, Y. Liu, X. Chen, J. Li, M. Zhang, Y. Zhao, and Z. Wang, Small 12, 1825 (2016).

    Google Scholar 

  33. 33

    S. Pogodin, J. Hasan, V. A. Baulin, H. K. Webb, V. Truong Khanh, T. H. Phong Nguyen, V. Boshkovikj, C. J. Fluke, G. S. Watson, J. A. Watson, R. J. Crawford, and E. P. Ivanova, Biophys. J. 104, 835 (2013).

    ADS  Google Scholar 

  34. 34

    G. D. Bixler, and B. Bhushan, Nanoscale 5, 7685 (2013).

    ADS  Google Scholar 

  35. 35

    J. Heo, T. Kang, S. G. Jang, D. S. Hwang, J. M. Spruell, K. L. Killops, J. H. Waite, and C. J. Hawker, J. Am. Chem. Soc. 134, 20139 (2012).

    Google Scholar 

  36. 36

    P. Ball, Nature 400, 507 (1999).

    ADS  Google Scholar 

  37. 37

    W. Xu, X. Zhou, C. Hao, H. Zheng, Y. Liu, X. Yan, Z. Yang, M. Leung, X. C. Zeng, R. X. Xu, and Z. Wang, Natl. Sci. Rev. 6, 540 (2019).

    Google Scholar 

  38. 38

    N. Liu, X. Lin, W. Zhang, Y. Cao, Y. Chen, L. Feng, and Y. Wei, Sci. Rep. 5, 9688 (2015).

    ADS  Google Scholar 

  39. 39

    H. Lu, M. Zhang, Y. Yang, Q. Huang, T. Fukuda, Z. Wang, and Y. Shen, Nat. Commun. 9, 3944 (2018).

    ADS  Google Scholar 

  40. 40

    S. Daniel, M. K. Chaudhury, and J. C. Chen, Science 291, 633 (2001).

    ADS  Google Scholar 

  41. 41

    L. Bocquet, and E. Lauga, Nat. Mater. 10, 334 (2011).

    ADS  Google Scholar 

  42. 42

    I. U. Vakarelski, N. A. Patankar, J. O. Marston, D. Y. C. Chan, and S. T. Thoroddsen, Nature 489, 274 (2012).

    ADS  Google Scholar 

  43. 43

    D. Quéré, Annu. Rev. Fluid Mech. 45, 197 (2013).

    ADS  MathSciNet  Google Scholar 

  44. 44

    J. C. Burton, A. L. Sharpe, R. C. A. van der Veen, A. Franco, and S. R. Nagel, Phys. Rev. Lett. 109, 74301 (2012), arXiv: 1202.2157.

    ADS  Google Scholar 

  45. 45

    J. W. Rose, Proc. Instit. Mech. Eng. Part A 216, 115 (2002).

    Google Scholar 

  46. 46

    J. Feng, Z. Qin, and S. Yao, Langmuir 28, 6067 (2012).

    Google Scholar 

  47. 47

    J. B. Boreyko, and C. H. Chen, Phys. Rev. Lett. 103, 184501 (2009).

    ADS  Google Scholar 

  48. 48

    X. Chen, J. Wu, R. Ma, M. Hua, N. Koratkar, S. Yao, and Z. Wang, Adv. Funct. Mater. 21, 4617 (2011).

    Google Scholar 

  49. 49

    R. Wen, Z. Lan, B. Peng, W. Xu, R. Yang, and X. Ma, ACS Appl. Mater. Interfaces 9, 13770 (2017).

    Google Scholar 

  50. 50

    M. D. Mulroe, B. R. Srijanto, S. F. Ahmadi, C. P. Collier, and J. B. Boreyko, ACS Nano 11, 8499 (2017).

    Google Scholar 

  51. 51

    A. Lafuma, and D. Quéré, Nat. Mater. 2, 457 (2003).

    ADS  Google Scholar 

  52. 52

    K. Rykaczewski, Langmuir 28, 7720 (2012).

    Google Scholar 

  53. 53

    L. Mishchenko, M. Khan, J. Aizenberg, and B. D. Hatton, Adv. Funct. Mater. 23, 4577 (2013).

    Google Scholar 

  54. 54

    K. K. Varanasi, M. Hsu, N. Bhate, W. Yang, and T. Deng, Appl. Phys. Lett. 95, 094101 (2009).

    ADS  Google Scholar 

  55. 55

    Y. Hou, M. Yu, X. Chen, Z. Wang, and S. Yao, ACS Nano 9, 71 (2014).

    Google Scholar 

  56. 56

    S. Anand, A. T. Paxson, R. Dhiman, J. D. Smith, and K. K. Varanasi, ACS Nano 6, 10122 (2012).

    Google Scholar 

  57. 57

    R. Xiao, N. Miljkovic, R. Enright, and E. N. Wang, Sci. Rep. 3, 1988 (2013).

    ADS  Google Scholar 

  58. 58

    K. H. Chu, R. Enright, and E. N. Wang, Appl. Phys. Lett. 100, 241603 (2012).

    ADS  Google Scholar 

  59. 59

    D. E. Kim, S. C. Park, D. I. Yu, M. H. Kim, and H. S. Ahn, Appl. Phys. Lett. 107, 023903 (2015).

    ADS  Google Scholar 

  60. 60

    R. Wen, X. Ma, Y. C. Lee, and R. Yang, Joule 2, 2307 (2018).

    Google Scholar 

  61. 61

    N. S. Dhillon, J. Buongiorno, and K. K. Varanasi, Nat. Commun. 6, 8247 (2015).

    ADS  Google Scholar 

  62. 62

    C. Li, Z. Wang, P. I. Wang, Y. Peles, N. Koratkar, and G. P. Peterson, Small 4, 1084 (2008).

    Google Scholar 

  63. 63

    T. Harirchian, and S. V. Garimella, Int. J. Heat Mass Transfer 51, 3724 (2008).

    Google Scholar 

  64. 64

    S. Lee, and I. Mudawar, Int. J. Heat Mass Transfer 97, 110 (2016).

    Google Scholar 

  65. 65

    T. Alam, W. Li, F. Yang, W. Chang, J. Li, Z. Wang, J. Khan, and C. Li, Int. J. Heat Mass Transfer 101, 915 (2016).

    Google Scholar 

  66. 66

    S. G. Kandlikar, J. Heat Transfer 134, 034001 (2012).

    Google Scholar 

  67. 67

    H. Zhu, Z. Guo, and W. Liu, Chem. Commun. 52, 3863 (2016).

    Google Scholar 

  68. 68

    S. Zhang, J. Huang, Z. Chen, and Y. Lai, Small 13, 1602992 (2017).

    Google Scholar 

  69. 69

    R. V. Wahlgren, Water Res. 35, 1 (2001).

    Google Scholar 

  70. 70

    A. Lee, M. W. Moon, H. Lim, W. D. Kim, and H. Y. Kim, Langmuir 28, 10183 (2012).

    Google Scholar 

  71. 71

    K. C. Park, S. S. Chhatre, S. Srinivasan, R. E. Cohen, and G. H. McKinley, Langmuir 29, 13269 (2013).

    Google Scholar 

  72. 72

    H. Kim, S. Yang, S. R. Rao, S. Narayanan, E. A. Kapustin, H. Furukawa, A. S. Umans, O. M. Yaghi, and E. N. Wang, Science 356, 430 (2017).

    ADS  Google Scholar 

  73. 73

    D. Quéré, Annu. Rev. Mater. Res. 38, 71 (2008).

    ADS  Google Scholar 

  74. 74

    Y. Zheng, H. Bai, Z. Huang, X. Tian, F. Q. Nie, Y. Zhao, J. Zhai, and L. Jiang, Nature 463, 640 (2010).

    ADS  Google Scholar 

  75. 75

    A. Roth-Nebelsick, M. Ebner, T. Miranda, V. Gottschalk, D. Voigt, S. Gorb, T. Stegmaier, J. Sarsour, M. Linke, and W. Konrad, J. R. Soc. Interface 9, 1965 (2012).

    Google Scholar 

  76. 76

    M. Ebner, T. Miranda, and A. Roth-Nebelsick, J. Arid Environ. 75, 524 (2011).

    ADS  Google Scholar 

  77. 77

    J. Wang, F. Liu, H. Chen, and D. Chen, Appl. Phys. Lett. 95, 084104 (2009).

    ADS  Google Scholar 

  78. 78

    J. Ju, H. Bai, Y. Zheng, T. Zhao, R. Fang, and L. Jiang, Nat. Commun. 3, 1247 (2012).

    ADS  Google Scholar 

  79. 79

    M. Prakash, D. Quéré, and J. W. M. Bush, Science 320, 931 (2008).

    ADS  Google Scholar 

  80. 80

    J. W. M. Bush, and D. L. Hu, Annu. Rev. Fluid Mech. 38, 339 (2006).

    ADS  Google Scholar 

  81. 81

    X. Noblin, S. Yang, and J. Dumais, J. Exp. Biol. 212, 2835 (2009).

    Google Scholar 

  82. 82

    Q. Wang, X. Yao, H. Liu, D. Quéré, and L. Jiang, Proc. Natl. Acad. Sci. USA 112, 9247 (2015).

    ADS  Google Scholar 

  83. 83

    J. Li, J. Li, J. Sun, S. Feng, and Z. Wang, Adv. Mater. 31, 1806501 (2019).

    Google Scholar 

  84. 84

    F. D. Dos Santos, and T. Ondarçuhu, Phys. Rev. Lett. 75, 2972 (1995).

    ADS  Google Scholar 

  85. 85

    H. Linke, B. J. Alemán, L. D. Melling, M. J. Taormina, M. J. Francis, C. C. Dow-Hygelund, V. Narayanan, R. P. Taylor, and A. Stout, Phys. Rev. Lett. 96, 154502 (2006).

    ADS  Google Scholar 

  86. 86

    L. Lorenceau, and D. Qur, J. Fluid Mech. 510, 29 (2004).

    ADS  Google Scholar 

  87. 87

    O. Sandre, L. Gorre-Talini, A. Ajdari, J. Prost, and P. Silberzan, Phys. Rev. E 60, 2964 (1999).

    ADS  Google Scholar 

  88. 88

    B. A. Grzybowski, H. A. Stone, and G. M. Whitesides, Nature 405, 1033 (2000).

    ADS  Google Scholar 

  89. 89

    K. Ichimura, S. K. Oh, and M. Nakagawa, Science 288, 1624 (2000).

    ADS  Google Scholar 

  90. 90

    M. G. Pollack, A. D. Shenderov, and R. B. Fair, Lab Chip 2, 96 (2002).

    Google Scholar 

  91. 91

    F. Mugele, and J. C. Baret, J. Phys.-Condens. Matter 17, R705 (2005).

    Google Scholar 

  92. 92

    N. A. Malvadkar, M. J. Hancock, K. Sekeroglu, W. J. Dressick, and M. C. Demirel, Nat. Mater. 9, 1023 (2010).

    ADS  Google Scholar 

  93. 93

    Y. Xue, J. Markmann, H. Duan, J. Weissmüller, and P. Huber, Nat. Commun. 5, 4237 (2014), arXiv: 1407.1038.

    ADS  Google Scholar 

  94. 94

    M. K. Chaudhury, A. Chakrabarti, and S. Daniel, Langmuir 31, 9266 (2015).

    Google Scholar 

  95. 95

    J. A. Lv, Y. Liu, J. Wei, E. Chen, L. Qin, and Y. Yu, Nature 537, 179 (2016).

    ADS  Google Scholar 

  96. 96

    G. Kwon, D. Panchanathan, S. R. Mahmoudi, M. A. Gondal, G. H. McKinley, and K. K. Varanasi, Nat. Commun. 8, 14968 (2017).

    ADS  Google Scholar 

  97. 97

    J. Ju, K. Xiao, X. Yao, H. Bai, and L. Jiang, Adv. Mater. 25, 5937 (2013).

    Google Scholar 

  98. 98

    X. Tian, Y. Chen, Y. Zheng, H. Bai, and L. Jiang, Adv. Mater. 23, 5486 (2011).

    Google Scholar 

  99. 99

    H. Dong, N. Wang, L. Wang, H. Bai, J. Wu, Y. Zheng, Y. Zhao, and L. Jiang, ChemPhysChem 13, 1153 (2012).

    Google Scholar 

  100. 100

    H. Bai, R. Sun, J. Ju, X. Yao, Y. Zheng, and L. Jiang, Small 7, 3429 (2011).

    Google Scholar 

  101. 101

    H. Bai, X. Tian, Y. Zheng, J. Ju, Y. Zhao, and L. Jiang, Adv. Mater. 22, 5521 (2010).

    Google Scholar 

  102. 102

    X. H. He, W. Wang, Y. M. Liu, M. Y. Jiang, F. Wu, K. Deng, Z. Liu, X. J. Ju, R. Xie, and L. Y. Chu, ACS Appl. Mater. Interfaces 7, 17471 (2015).

    Google Scholar 

  103. 103

    X. Heng, M. Xiang, Z. Lu, and C. Luo, ACS Appl. Mater. Interfaces 6, 8032 (2014).

    Google Scholar 

  104. 104

    M. Cao, J. Ju, K. Li, S. Dou, K. Liu, and L. Jiang, Adv. Funct. Mater. 24, 3235 (2014).

    Google Scholar 

  105. 105

    A. Yu, X. Chen, R. Wang, J. Liu, J. Luo, L. Chen, Y. Zhang, W. Wu, C. Liu, H. Yuan, M. Peng, W. Hu, J. Zhai, and Z. L. Wang, ACS Nano 10, 3944 (2016).

    Google Scholar 

  106. 106

    F. R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, and Z. L. Wang, Nano Lett. 12, 3109 (2012).

    ADS  Google Scholar 

  107. 107

    J. Wang, C. Wu, Y. Dai, Z. Zhao, A. Wang, T. Zhang, and Z. L. Wang, Nat. Commun. 8, 88 (2017).

    ADS  Google Scholar 

  108. 108

    F. R. Fan, Z. Q. Tian, and Z. L. Wang, Nano Energy 1, 328 (2012).

    Google Scholar 

  109. 109

    U. Khan, and S. W. Kim, ACS Nano 10, 6429 (2016).

    Google Scholar 

  110. 110

    Z. L. Wang, J. Chen, and L. Lin, Energy Environ. Sci. 8, 2250 (2015).

    Google Scholar 

  111. 111

    S. Niu, Y. Liu, S. Wang, L. Lin, Y. S. Zhou, Y. Hu, and Z. L. Wang, Adv. Funct. Mater. 24, 3332 (2014).

    Google Scholar 

  112. 112

    S. Niu, S. Wang, L. Lin, Y. Liu, Y. S. Zhou, Y. Hu, and Z. L. Wang, Energy Environ. Sci. 6, 3576 (2013).

    Google Scholar 

  113. 113

    K. Y. Lee, J. Chun, J. H. Lee, K. N. Kim, N. R. Kang, J. Y. Kim, M. H. Kim, K. S. Shin, M. K. Gupta, J. M. Baik, and S. W. Kim, Adv. Mater. 26, 5037 (2014).

    Google Scholar 

  114. 114

    S. Jin, Y. Wang, M. Motlag, S. Gao, J. Xu, Q. Nian, W. Wu, and G. J. Cheng, Adv. Mater. 30, 1705840 (2018).

    Google Scholar 

  115. 115

    J. Xiong, M. F. Lin, J. Wang, S. L. Gaw, K. Parida, and P. S. Lee, Adv. Energy Mater. 7, 1701243 (2017).

    Google Scholar 

  116. 116

    H. T. Baytekin, A. Z. Patashinski, M. Branicki, B. Baytekin, S. Soh, and B. A. Grzybowski, Science 333, 308 (2011).

    ADS  Google Scholar 

  117. 117

    J. Liu, W. Tang, X. Meng, L. Zhan, W. Xu, Z. Nie, and Z. Wang, ACS Omega 3, 12229 (2018).

    Google Scholar 

  118. 118

    C. Li, Y. Yin, B. Wang, T. Zhou, J. Wang, J. Luo, W. Tang, R. Cao, Z. Yuan, N. Li, X. Du, C. Wang, S. Zhao, Y. Liu, and Z. L. Wang, ACS Nano 11, 10439 (2017).

    Google Scholar 

  119. 119

    Y. Liu, L. Moevius, X. Xu, T. Qian, J. M. Yeomans, and Z. Wang, Nat. Phys. 10, 515 (2014), arXiv: 1406.3203.

    Google Scholar 

  120. 120

    C. Clanet, C. Béguin, D. Richard, and D. Quéré, J. Fluid Mech. 517, 199 (2004).

    ADS  Google Scholar 

  121. 121

    X. Tian, T. Verho, and R. H. A. Ras, Science 352, 142 (2016).

    ADS  Google Scholar 

  122. 122

    S. Moulinet, and D. Bartolo, Eur. Phys. J. E 24, 251 (2007).

    Google Scholar 

  123. 123

    S. Amini, S. Kolle, L. Petrone, O. Ahanotu, S. Sunny, C. N. Sutanto, S. Hoon, L. Cohen, J. C. Weaver, J. Aizenberg, N. Vogel, and A. Miserez, Science 357, 668 (2017).

    ADS  Google Scholar 

  124. 124

    D. Choi, D. W. Kim, D. Yoo, K. J. Cha, M. La, and D. S. Kim, Nano Energy 36, 250 (2017).

    Google Scholar 

  125. 125

    T. S. Wong, S. H. Kang, S. K. Y. Tang, E. J. Smythe, B. D. Hatton, A. Grinthal, and J. Aizenberg, Nature 477, 443 (2011).

    ADS  Google Scholar 

  126. 126

    P. Kim, T. S. Wong, J. Alvarenga, M. J. Kreder, W. E. Adorno-Martinez, and J. Aizenberg, ACS Nano 6, 6569 (2012).

    Google Scholar 

  127. 127

    K. Rykaczewski, S. Anand, S. B. Subramanyam, and K. K. Varanasi, Langmuir 29, 5230 (2013).

    Google Scholar 

  128. 128

    B. P. Jelle, Energy Buildings 67, 334 (2013).

    Google Scholar 

  129. 129

    Z. He, K. Liu, and J. Wang, Acc. Chem. Res. 51, 1082 (2018).

    Google Scholar 

  130. 130

    S. A. Kulinich, S. Farhadi, K. Nose, and X. W. Du, Langmuir 27, 25 (2011).

    Google Scholar 

  131. 131

    P. Guo, Y. Zheng, M. Wen, C. Song, Y. Lin, and L. Jiang, Adv. Mater. 24, 2642 (2012).

    Google Scholar 

  132. 132

    J. B. Boreyko, and C. P. Collier, ACS Nano 7, 1618 (2013).

    Google Scholar 

  133. 133

    X. Chen, R. Ma, H. Zhou, X. Zhou, L. Che, S. Yao, and Z. Wang, Sci. Rep. 3, 2515 (2013).

    ADS  Google Scholar 

  134. 134

    J. Lv, Y. Song, L. Jiang, and J. Wang, ACS Nano 8, 3152 (2014).

    Google Scholar 

  135. 135

    N. Miljkovic, R. Enright, Y. Nam, K. Lopez, N. Dou, J. Sack, and E. N. Wang, Nano Lett. 13, 179 (2012).

    ADS  Google Scholar 

  136. 136

    L. Cao, A. K. Jones, V. K. Sikka, J. Wu, and D. Gao, Langmuir 25, 12444 (2009).

    Google Scholar 

  137. 137

    P. W. Wilson, W. Lu, H. Xu, P. Kim, M. J. Kreder, J. Alvarenga, and J. Aizenberg, Phys. Chem. Chem. Phys. 15, 581 (2013).

    Google Scholar 

  138. 138

    S. Sett, X. Yan, G. Barac, L. W. Bolton, and N. Miljkovic, ACS Appl. Mater. Interfaces 9, 36400 (2017).

    Google Scholar 

  139. 139

    J. Chen, R. Dou, D. Cui, Q. Zhang, Y. Zhang, F. Xu, X. Zhou, J. Wang, Y. Song, and L. Jiang, ACS Appl. Mater. Interfaces 5, 4026 (2013).

    Google Scholar 

  140. 140

    J. D. Smith, R. Dhiman, S. Anand, E. Reza-Garduno, R. E. Cohen, G. H. McKinley, and K. K. Varanasi, Soft Matter 9, 1772 (2013).

    ADS  Google Scholar 

  141. 141

    S. B. Subramanyam, K. Rykaczewski, and K. K. Varanasi, Langmuir 29, 13414 (2013).

    Google Scholar 

  142. 142

    M. J. Nine, T. T. Tung, F. Alotaibi, D. N. H. Tran, and D. Losic, ACS Appl. Mater. Interfaces 9, 8393 (2017).

    Google Scholar 

  143. 143

    C. Howell, T. L. Vu, C. P. Johnson, X. Hou, O. Ahanotu, J. Alvarenga, D. C. Leslie, O. Uzun, A. Waterhouse, P. Kim, M. Super, M. Aizenberg, D. E. Ingber, and J. Aizenberg, Chem. Mater. 27, 1792 (2015).

    Google Scholar 

  144. 144

    J. Eisenhaure, and S. Kim, Micromachines 8, 125 (2017).

    Google Scholar 

  145. 145

    J. Yang, R. Bai, and Z. Suo, Adv. Mater. 30, 1800671 (2018).

    Google Scholar 

  146. 146

    S. Baik, H. J. Lee, D. W. Kim, J. W. Kim, Y. Lee, and C. Pang, Adv. Mater. 405, 1803309 (2019).

    Google Scholar 

  147. 147

    S. Singla, G. Amarpuri, N. Dhopatkar, T. A. Blackledge, and A. Dhinojwala, Nat. Commun. 9, 1890 (2018).

    ADS  Google Scholar 

  148. 148

    T. W. Kim, and B. Bhushan, Ultramicroscopy 107, 902 (2007).

    Google Scholar 

  149. 149

    H. E. Jeong, J. K. Lee, H. N. Kim, S. Heup Moon, and K. Y. Suh, Proc. Natl. Acad. Sci. USA 106, 5639 (2009).

    ADS  Google Scholar 

  150. 150

    D. Y. Lee, D. H. Lee, S. G. Lee, and K. Cho, Soft Matter 8, 4905 (2012).

    ADS  Google Scholar 

  151. 151

    H. S. Im, J. U. Kim, S. Han, and T. I. Kim, Polymers 8, 326 (2016).

    Google Scholar 

  152. 152

    J. Liu, and O. A. Scherman, Adv. Funct. Mater. 28, 1800848 (2018).

    Google Scholar 

  153. 153

    Z. Qin, and M. J. Buehler, J. Mech. Phys. Solids 62, 19 (2014).

    ADS  Google Scholar 

  154. 154

    Y. Zhao, Y. Wu, L. Wang, M. Zhang, X. Chen, M. Liu, J. Fan, J. Liu, F. Zhou, and Z. Wang, Nat. Commun. 8, 2218 (2017).

    ADS  Google Scholar 

  155. 155

    G. Ju, M. Cheng, F. Guo, Q. Zhang, and F. Shi, Angew. Chem. Int. Ed. 57, 8963 (2018).

    Google Scholar 

  156. 156

    S. Palagi, and P. Fischer, Nat. Rev. Mater. 3, 113 (2018).

    ADS  Google Scholar 

  157. 157

    N. W. Bartlett, M. T. Tolley, J. T. B. Overvelde, J. C. Weaver, B. Mosadegh, K. Bertoldi, G. M. Whitesides, and R. J. Wood, Science 349, 161 (2015).

    ADS  Google Scholar 

  158. 158

    A. Ghosh, and P. Fischer, Nano Lett. 9, 2243 (2009).

    ADS  Google Scholar 

  159. 159

    J. Li, S. Sattayasamitsathit, R. Dong, W. Gao, R. Tam, X. Feng, S. Ai, and J. Wang, Nanoscale 6, 9415 (2014).

    ADS  Google Scholar 

  160. 160

    S. Li, R. Batra, D. Brown, H. D. Chang, N. Ranganathan, C. Hoberman, D. Rus, and H. Lipson, Nature 567, 361 (2019).

    ADS  Google Scholar 

  161. 161

    Y. Kim, H. Yuk, R. Zhao, S. A. Chester, and X. Zhao, Nature 558, 274 (2018).

    ADS  Google Scholar 

  162. 162

    R. F. Shepherd, F. Ilievski, W. Choi, S. A. Morin, A. A. Stokes, A. D. Mazzeo, X. Chen, M. Wang, and G. M. Whitesides, Proc. Natl. Acad. Sci. USA 108, 20400 (2011).

    ADS  Google Scholar 

  163. 163

    B. Shin, J. Ha, M. Lee, K. Park, G. H. Park, T. H. Choi, K. J. Cho, and H. Y. Kim, Sci. Robot. 3, eaar2629 (2018).

    Google Scholar 

  164. 164

    F. Connolly, C. J. Walsh, and K. Bertoldi, Proc. Natl. Acad. Sci. USA 114, 51 (2017).

    ADS  Google Scholar 

  165. 165

    D. Rus, and M. T. Tolley, Nature 521, 467 (2015).

    ADS  Google Scholar 

  166. 166

    M. Wehner, R. L. Truby, D. J. Fitzgerald, B. Mosadegh, G. M. Whitesides, J. A. Lewis, and R. J. Wood, Nature 536, 451 (2016).

    ADS  Google Scholar 

  167. 167

    F. Ilievski, A. D. Mazzeo, R. F. Shepherd, X. Chen, and G. M. Whitesides, Angew. Chem. Int. Ed. 50, 1890 (2011).

    Google Scholar 

  168. 168

    E. Brown, N. Rodenberg, J. Amend, A. Mozeika, E. Steltz, M. R. Zakin, H. Lipson, and H. M. Jaeger, Proc. Natl. Acad. Sci. USA 107, 18809 (2010), arXiv: 1009.4444.

    ADS  Google Scholar 

  169. 169

    B. S. Homberg, R. K. Katzschmann, M. R. Dogar, and D. Rus, Auton Robot 43, 681 (2019).

    Google Scholar 

  170. 170

    I. Must, E. Sinibaldi, and B. Mazzolai, Nat. Commun. 10, 344 (2019).

    ADS  Google Scholar 

  171. 171

    J. Wang, M. F. Lin, S. Park, and P. S. Lee, Mater. Today 21, 508 (2018).

    Google Scholar 

  172. 172

    H. H. Chou, A. Nguyen, A. Chortos, J. W. F. To, C. Lu, J. Mei, T. Kurosawa, W. G. Bae, J. B. H. Tok, and Z. Bao, Nat. Commun. 6, 8011 (2015).

    ADS  Google Scholar 

  173. 173

    C. M. Boutry, M. Negre, M. Jorda, O. Vardoulis, A. Chortos, O. Khatib, and Z. Bao, Sci. Robot. 3, eaau6914 (2018).

    Google Scholar 

  174. 174

    H. Zhao, K. O’Brien, S. Li, R. F. Shepherd, Sci. Robot. 1, eaai7529 (2016).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to XueMei Chen or ZuanKai Wang.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2018YFA0209500), the Research Council of Hong Kong (Grant Nos. C1018-17G, and 11275216), the Shenzhen Science and Technology Innovation Council (Grant No. JCYJ20170413141208098), the National Natural Science Foundation of China (Grant No. 51706100), the Natural Science Foundation of Jiangsu Province (Grant No. BK20180477), and the City University of Hong Kong (Grant No. 9360140).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Jin, Y., Chen, X. et al. Nature-inspired surface topography: design and function. Sci. China Phys. Mech. Astron. 63, 224601 (2020). https://doi.org/10.1007/s11433-019-9643-0

Download citation

Keywords

  • natural inspiration
  • biomimetic
  • surface topography
  • surface engineering
  • unique functions
  • interfacial interaction
  • mechanisms