Advertisement

Nature-inspired surface topography: design and function

  • XianTong Yan
  • YuanKai Jin
  • XueMei ChenEmail author
  • Chao Zhang
  • ChongLei Hao
  • ZuanKai WangEmail author
Invited Review

Abstract

Learning from nature has traditionally and continuously provided important insights to drive a paradigm shift in technology. In particular, recent studies show that many biological organisms exhibit spectacular surface topography such as shape, size, spatial organization, periodicity, interconnectivity, and hierarchy to endow them with the capability to adapt dynamically and responsively to a wide range of environments. More excitingly, in a broader perspective, these normally neglected topological features have the potential to fundamentally change the way of how engineering surface works, such as how fluid flows, how heat is transported, and how energy is generated, saved, and converted, to name a few. Thus, the design of nature-inspired surface topography for unique functions will spur new thinking and provide paradigm shift in the development of the new engineering surfaces. In this review, we first present a brief introduction to some insights extracted from nature. Then, we highlight recent progress in designing new surface topographies and demonstrate their applications in emerging areas including thermal-fluid transport, anti-icing, water harvesting, power generation, adhesive control, and soft robotics. Finally, we offer our perspectives on this emerging field, with the aim to stimulate new thinking on the development of next-generation of new materials and devices, and dramatically extend the boundaries of traditional engineering.

Keywords

natural inspiration biomimetic surface topography surface engineering unique functions interfacial interaction mechanisms 

References

  1. 1.
    M. A. Meyers, J. McKittrick, and P. Y. Chen, Science 339, 773 (2013).ADSCrossRefGoogle Scholar
  2. 2.
    U. G. K. Wegst, H. Bai, E. Saiz, A. P. Tomsia, and R. O. Ritchie, Nat. Mater. 14, 23 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    P. Egan, R. Sinko, P. R. LeDuc, and S. Keten, Nat. Commun. 6, 7418 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    Y. Zhao, Z. Xie, H. Gu, C. Zhu, and Z. Gu, Chem. Soc. Rev. 41, 3297 (2012).CrossRefGoogle Scholar
  5. 5.
    D. W. Wood, P. M. Schulte, and S. Edition, Principles of Animal Physiology (Pearson Education Limited, New York, 1972), p. 1.Google Scholar
  6. 6.
    K. Autumn, M. Sitti, Y. A. Liang, A. M. Peattie, W. R. Hansen, S. Sponberg, T. W. Kenny, R. Fearing, J. N. Israelachvili, and R. J. Full, Proc. Natl. Acad. Sci. USA 99, 12252 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    A. R. Parker, and C. R. Lawrence, Nature 414, 33 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    R. Blossey, Nat. Mater. 2, 301 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    L. Ren, and Y. Liang, The Introduction of Bionics (Science Press, Beijing, 2016), p. 1.Google Scholar
  10. 10.
    J. C. Wang, Harvey Lect. 81, 93 (1985).Google Scholar
  11. 11.
    C. Falbo, College Math. J. 36, 123 (2005).MathSciNetGoogle Scholar
  12. 12.
    H. Chen, P. Zhang, L. Zhang, H. Liu, Y. Jiang, D. Zhang, Z. Han, and L. Jiang, Nature 532, 85 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    S. Seok, C. D. Onal, K. J. Cho, R. J. Wood, D. Rus, and S. Kim, IEEE/ASME Trans. Mechatron. 18, 1485 (2013).CrossRefGoogle Scholar
  14. 14.
    T. B. H. Schroeder, A. Guha, A. Lamoureux, G. VanRenterghem, D. Sept, M. Shtein, J. Yang, and M. Mayer, Nature 552, 214 (2017).ADSCrossRefGoogle Scholar
  15. 15.
    C. Neinhuis, and W. Barthlott, Ann. Bot. 79, 667 (1997).CrossRefGoogle Scholar
  16. 16.
    H. J. Ensikat, P. Ditsche-Kuru, C. Neinhuis, and W. Barthlott, Beilstein J. Nanotechnol. 2, 152 (2011).CrossRefGoogle Scholar
  17. 17.
    K. Autumn, A. Dittmore, D. Santos, M. Spenko, and M. Cutkosky, J. Exp. Biol. 209, 3569 (2006).CrossRefGoogle Scholar
  18. 18.
    H. Gao, X. Wang, H. Yao, S. Gorb, and E. Arzt, Mech. Mater. 37, 275 (2005).CrossRefGoogle Scholar
  19. 19.
    C. Wang, K. Sim, J. Chen, H. Kim, Z. Rao, Y. Li, W. Chen, J. Song, R. Verduzco, and C. Yu, Adv. Mater. 30, 1706695 (2018).CrossRefGoogle Scholar
  20. 20.
    W. Wang, J. Y. Lee, H. Rodrigue, S. H. Song, W. S. Chu, and S. H. Ahn, Bioinspir. Biomim. 9, 046006 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    Z. Jing, L. Qiao, H. Pan, Y. Yang, and W. Chen, Sci. China Inf. Sci. 60, 050201 (2017).CrossRefGoogle Scholar
  22. 22.
    Q. Guo, E. Dai, X. Han, S. Xie, E. Chao, and Z. Chen, J. R. Soc. Interface 12, 20150598 (2015).CrossRefGoogle Scholar
  23. 23.
    C. Xu, G. T. Stiubianu, and A. A. Gorodetsky, Science 359, 1495 (2018).ADSCrossRefGoogle Scholar
  24. 24.
    M. Vatankhah-Varnosfaderani, A. N. Keith, Y. Cong, H. Liang, M. Rosenthal, M. Sztucki, C. Clair, S. Magonov, D. A. Ivanov, A. V. Dobrynin, and S. S. Sheiko, Science 359, 1509 (2018).ADSCrossRefGoogle Scholar
  25. 25.
    R. Wen, Q. Li, W. Wang, B. Latour, C. H. Li, C. Li, Y. C. Lee, and R. Yang, Nano Energy 38, 59 (2017).ADSCrossRefGoogle Scholar
  26. 26.
    H. He, C. Qiu, L. Ye, X. Cai, X. Fan, M. Ke, F. Zhang, and Z. Liu, Nature 560, 61 (2018), arXiv: 1808.04647.ADSCrossRefGoogle Scholar
  27. 27.
    M. J. Kreder, J. Alvarenga, P. Kim, and J. Aizenberg, Nat. Rev. Mater. 1, 15003 (2016).ADSCrossRefGoogle Scholar
  28. 28.
    K. Liu, and L. Jiang, Annu. Rev. Mater. Res. 42, 231 (2012).ADSCrossRefGoogle Scholar
  29. 29.
    G. D. Bixler, and B. Bhushan, Soft Matter 8, 11271 (2012).ADSCrossRefGoogle Scholar
  30. 30.
    J. Li, Y. Hou, Y. Liu, C. Hao, M. Li, M. K. Chaudhury, S. Yao, and Z. Wang, Nat. Phys. 12, 606 (2016).CrossRefGoogle Scholar
  31. 31.
    D. J. Preston, D. L. Mafra, N. Miljkovic, J. Kong, and E. N. Wang, Nano Lett. 15, 2902 (2015).ADSCrossRefGoogle Scholar
  32. 32.
    C. Hao, Y. Liu, X. Chen, J. Li, M. Zhang, Y. Zhao, and Z. Wang, Small 12, 1825 (2016).CrossRefGoogle Scholar
  33. 33.
    S. Pogodin, J. Hasan, V. A. Baulin, H. K. Webb, V. Truong Khanh, T. H. Phong Nguyen, V. Boshkovikj, C. J. Fluke, G. S. Watson, J. A. Watson, R. J. Crawford, and E. P. Ivanova, Biophys. J. 104, 835 (2013).ADSCrossRefGoogle Scholar
  34. 34.
    G. D. Bixler, and B. Bhushan, Nanoscale 5, 7685 (2013).ADSCrossRefGoogle Scholar
  35. 35.
    J. Heo, T. Kang, S. G. Jang, D. S. Hwang, J. M. Spruell, K. L. Killops, J. H. Waite, and C. J. Hawker, J. Am. Chem. Soc. 134, 20139 (2012).CrossRefGoogle Scholar
  36. 36.
    P. Ball, Nature 400, 507 (1999).ADSCrossRefGoogle Scholar
  37. 37.
    W. Xu, X. Zhou, C. Hao, H. Zheng, Y. Liu, X. Yan, Z. Yang, M. Leung, X. C. Zeng, R. X. Xu, and Z. Wang, Natl. Sci. Rev. 6, 540 (2019).CrossRefGoogle Scholar
  38. 38.
    N. Liu, X. Lin, W. Zhang, Y. Cao, Y. Chen, L. Feng, and Y. Wei, Sci. Rep. 5, 9688 (2015).ADSCrossRefGoogle Scholar
  39. 39.
    H. Lu, M. Zhang, Y. Yang, Q. Huang, T. Fukuda, Z. Wang, and Y. Shen, Nat. Commun. 9, 3944 (2018).ADSCrossRefGoogle Scholar
  40. 40.
    S. Daniel, M. K. Chaudhury, and J. C. Chen, Science 291, 633 (2001).ADSCrossRefGoogle Scholar
  41. 41.
    L. Bocquet, and E. Lauga, Nat. Mater. 10, 334 (2011).ADSCrossRefGoogle Scholar
  42. 42.
    I. U. Vakarelski, N. A. Patankar, J. O. Marston, D. Y. C. Chan, and S. T. Thoroddsen, Nature 489, 274 (2012).ADSCrossRefGoogle Scholar
  43. 43.
    D. Quéré, Annu. Rev. Fluid Mech. 45, 197 (2013).ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    J. C. Burton, A. L. Sharpe, R. C. A. van der Veen, A. Franco, and S. R. Nagel, Phys. Rev. Lett. 109, 74301 (2012), arXiv: 1202.2157.ADSCrossRefGoogle Scholar
  45. 45.
    J. W. Rose, Proc. Instit. Mech. Eng. Part A 216, 115 (2002).CrossRefGoogle Scholar
  46. 46.
    J. Feng, Z. Qin, and S. Yao, Langmuir 28, 6067 (2012).CrossRefGoogle Scholar
  47. 47.
    J. B. Boreyko, and C. H. Chen, Phys. Rev. Lett. 103, 184501 (2009).ADSCrossRefGoogle Scholar
  48. 48.
    X. Chen, J. Wu, R. Ma, M. Hua, N. Koratkar, S. Yao, and Z. Wang, Adv. Funct. Mater. 21, 4617 (2011).CrossRefGoogle Scholar
  49. 49.
    R. Wen, Z. Lan, B. Peng, W. Xu, R. Yang, and X. Ma, ACS Appl. Mater. Interfaces 9, 13770 (2017).CrossRefGoogle Scholar
  50. 50.
    M. D. Mulroe, B. R. Srijanto, S. F. Ahmadi, C. P. Collier, and J. B. Boreyko, ACS Nano 11, 8499 (2017).CrossRefGoogle Scholar
  51. 51.
    A. Lafuma, and D. Quéré, Nat. Mater. 2, 457 (2003).ADSCrossRefGoogle Scholar
  52. 52.
    K. Rykaczewski, Langmuir 28, 7720 (2012).CrossRefGoogle Scholar
  53. 53.
    L. Mishchenko, M. Khan, J. Aizenberg, and B. D. Hatton, Adv. Funct. Mater. 23, 4577 (2013).CrossRefGoogle Scholar
  54. 54.
    K. K. Varanasi, M. Hsu, N. Bhate, W. Yang, and T. Deng, Appl. Phys. Lett. 95, 094101 (2009).ADSCrossRefGoogle Scholar
  55. 55.
    Y. Hou, M. Yu, X. Chen, Z. Wang, and S. Yao, ACS Nano 9, 71 (2014).CrossRefGoogle Scholar
  56. 56.
    S. Anand, A. T. Paxson, R. Dhiman, J. D. Smith, and K. K. Varanasi, ACS Nano 6, 10122 (2012).CrossRefGoogle Scholar
  57. 57.
    R. Xiao, N. Miljkovic, R. Enright, and E. N. Wang, Sci. Rep. 3, 1988 (2013).ADSCrossRefGoogle Scholar
  58. 58.
    K. H. Chu, R. Enright, and E. N. Wang, Appl. Phys. Lett. 100, 241603 (2012).ADSCrossRefGoogle Scholar
  59. 59.
    D. E. Kim, S. C. Park, D. I. Yu, M. H. Kim, and H. S. Ahn, Appl. Phys. Lett. 107, 023903 (2015).ADSCrossRefGoogle Scholar
  60. 60.
    R. Wen, X. Ma, Y. C. Lee, and R. Yang, Joule 2, 2307 (2018).CrossRefGoogle Scholar
  61. 61.
    N. S. Dhillon, J. Buongiorno, and K. K. Varanasi, Nat. Commun. 6, 8247 (2015).ADSCrossRefGoogle Scholar
  62. 62.
    C. Li, Z. Wang, P. I. Wang, Y. Peles, N. Koratkar, and G. P. Peterson, Small 4, 1084 (2008).CrossRefGoogle Scholar
  63. 63.
    T. Harirchian, and S. V. Garimella, Int. J. Heat Mass Transfer 51, 3724 (2008).CrossRefGoogle Scholar
  64. 64.
    S. Lee, and I. Mudawar, Int. J. Heat Mass Transfer 97, 110 (2016).CrossRefGoogle Scholar
  65. 65.
    T. Alam, W. Li, F. Yang, W. Chang, J. Li, Z. Wang, J. Khan, and C. Li, Int. J. Heat Mass Transfer 101, 915 (2016).CrossRefGoogle Scholar
  66. 66.
    S. G. Kandlikar, J. Heat Transfer 134, 034001 (2012).CrossRefGoogle Scholar
  67. 67.
    H. Zhu, Z. Guo, and W. Liu, Chem. Commun. 52, 3863 (2016).CrossRefGoogle Scholar
  68. 68.
    S. Zhang, J. Huang, Z. Chen, and Y. Lai, Small 13, 1602992 (2017).CrossRefGoogle Scholar
  69. 69.
    R. V. Wahlgren, Water Res. 35, 1 (2001).CrossRefGoogle Scholar
  70. 70.
    A. Lee, M. W. Moon, H. Lim, W. D. Kim, and H. Y. Kim, Langmuir 28, 10183 (2012).CrossRefGoogle Scholar
  71. 71.
    K. C. Park, S. S. Chhatre, S. Srinivasan, R. E. Cohen, and G. H. McKinley, Langmuir 29, 13269 (2013).CrossRefGoogle Scholar
  72. 72.
    H. Kim, S. Yang, S. R. Rao, S. Narayanan, E. A. Kapustin, H. Furukawa, A. S. Umans, O. M. Yaghi, and E. N. Wang, Science 356, 430 (2017).ADSCrossRefGoogle Scholar
  73. 73.
    D. Quéré, Annu. Rev. Mater. Res. 38, 71 (2008).ADSCrossRefGoogle Scholar
  74. 74.
    Y. Zheng, H. Bai, Z. Huang, X. Tian, F. Q. Nie, Y. Zhao, J. Zhai, and L. Jiang, Nature 463, 640 (2010).ADSCrossRefGoogle Scholar
  75. 75.
    A. Roth-Nebelsick, M. Ebner, T. Miranda, V. Gottschalk, D. Voigt, S. Gorb, T. Stegmaier, J. Sarsour, M. Linke, and W. Konrad, J. R. Soc. Interface 9, 1965 (2012).CrossRefGoogle Scholar
  76. 76.
    M. Ebner, T. Miranda, and A. Roth-Nebelsick, J. Arid Environ. 75, 524 (2011).ADSCrossRefGoogle Scholar
  77. 77.
    J. Wang, F. Liu, H. Chen, and D. Chen, Appl. Phys. Lett. 95, 084104 (2009).ADSCrossRefGoogle Scholar
  78. 78.
    J. Ju, H. Bai, Y. Zheng, T. Zhao, R. Fang, and L. Jiang, Nat. Commun. 3, 1247 (2012).ADSCrossRefGoogle Scholar
  79. 79.
    M. Prakash, D. Quéré, and J. W. M. Bush, Science 320, 931 (2008).ADSCrossRefGoogle Scholar
  80. 80.
    J. W. M. Bush, and D. L. Hu, Annu. Rev. Fluid Mech. 38, 339 (2006).ADSCrossRefGoogle Scholar
  81. 81.
    X. Noblin, S. Yang, and J. Dumais, J. Exp. Biol. 212, 2835 (2009).CrossRefGoogle Scholar
  82. 82.
    Q. Wang, X. Yao, H. Liu, D. Quéré, and L. Jiang, Proc. Natl. Acad. Sci. USA 112, 9247 (2015).ADSCrossRefGoogle Scholar
  83. 83.
    J. Li, J. Li, J. Sun, S. Feng, and Z. Wang, Adv. Mater. 31, 1806501 (2019).CrossRefGoogle Scholar
  84. 84.
    F. D. Dos Santos, and T. Ondarçuhu, Phys. Rev. Lett. 75, 2972 (1995).ADSCrossRefGoogle Scholar
  85. 85.
    H. Linke, B. J. Alemán, L. D. Melling, M. J. Taormina, M. J. Francis, C. C. Dow-Hygelund, V. Narayanan, R. P. Taylor, and A. Stout, Phys. Rev. Lett. 96, 154502 (2006).ADSCrossRefGoogle Scholar
  86. 86.
    L. Lorenceau, and D. Qur, J. Fluid Mech. 510, 29 (2004).ADSCrossRefGoogle Scholar
  87. 87.
    O. Sandre, L. Gorre-Talini, A. Ajdari, J. Prost, and P. Silberzan, Phys. Rev. E 60, 2964 (1999).ADSCrossRefGoogle Scholar
  88. 88.
    B. A. Grzybowski, H. A. Stone, and G. M. Whitesides, Nature 405, 1033 (2000).ADSCrossRefGoogle Scholar
  89. 89.
    K. Ichimura, S. K. Oh, and M. Nakagawa, Science 288, 1624 (2000).ADSCrossRefGoogle Scholar
  90. 90.
    M. G. Pollack, A. D. Shenderov, and R. B. Fair, Lab Chip 2, 96 (2002).CrossRefGoogle Scholar
  91. 91.
    F. Mugele, and J. C. Baret, J. Phys.-Condens. Matter 17, R705 (2005).CrossRefGoogle Scholar
  92. 92.
    N. A. Malvadkar, M. J. Hancock, K. Sekeroglu, W. J. Dressick, and M. C. Demirel, Nat. Mater. 9, 1023 (2010).ADSCrossRefGoogle Scholar
  93. 93.
    Y. Xue, J. Markmann, H. Duan, J. Weissmüller, and P. Huber, Nat. Commun. 5, 4237 (2014), arXiv: 1407.1038.ADSCrossRefGoogle Scholar
  94. 94.
    M. K. Chaudhury, A. Chakrabarti, and S. Daniel, Langmuir 31, 9266 (2015).CrossRefGoogle Scholar
  95. 95.
    J. A. Lv, Y. Liu, J. Wei, E. Chen, L. Qin, and Y. Yu, Nature 537, 179 (2016).ADSCrossRefGoogle Scholar
  96. 96.
    G. Kwon, D. Panchanathan, S. R. Mahmoudi, M. A. Gondal, G. H. McKinley, and K. K. Varanasi, Nat. Commun. 8, 14968 (2017).ADSCrossRefGoogle Scholar
  97. 97.
    J. Ju, K. Xiao, X. Yao, H. Bai, and L. Jiang, Adv. Mater. 25, 5937 (2013).CrossRefGoogle Scholar
  98. 98.
    X. Tian, Y. Chen, Y. Zheng, H. Bai, and L. Jiang, Adv. Mater. 23, 5486 (2011).CrossRefGoogle Scholar
  99. 99.
    H. Dong, N. Wang, L. Wang, H. Bai, J. Wu, Y. Zheng, Y. Zhao, and L. Jiang, ChemPhysChem 13, 1153 (2012).CrossRefGoogle Scholar
  100. 100.
    H. Bai, R. Sun, J. Ju, X. Yao, Y. Zheng, and L. Jiang, Small 7, 3429 (2011).CrossRefGoogle Scholar
  101. 101.
    H. Bai, X. Tian, Y. Zheng, J. Ju, Y. Zhao, and L. Jiang, Adv. Mater. 22, 5521 (2010).CrossRefGoogle Scholar
  102. 102.
    X. H. He, W. Wang, Y. M. Liu, M. Y. Jiang, F. Wu, K. Deng, Z. Liu, X. J. Ju, R. Xie, and L. Y. Chu, ACS Appl. Mater. Interfaces 7, 17471 (2015).CrossRefGoogle Scholar
  103. 103.
    X. Heng, M. Xiang, Z. Lu, and C. Luo, ACS Appl. Mater. Interfaces 6, 8032 (2014).CrossRefGoogle Scholar
  104. 104.
    M. Cao, J. Ju, K. Li, S. Dou, K. Liu, and L. Jiang, Adv. Funct. Mater. 24, 3235 (2014).CrossRefGoogle Scholar
  105. 105.
    A. Yu, X. Chen, R. Wang, J. Liu, J. Luo, L. Chen, Y. Zhang, W. Wu, C. Liu, H. Yuan, M. Peng, W. Hu, J. Zhai, and Z. L. Wang, ACS Nano 10, 3944 (2016).CrossRefGoogle Scholar
  106. 106.
    F. R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, and Z. L. Wang, Nano Lett. 12, 3109 (2012).ADSCrossRefGoogle Scholar
  107. 107.
    J. Wang, C. Wu, Y. Dai, Z. Zhao, A. Wang, T. Zhang, and Z. L. Wang, Nat. Commun. 8, 88 (2017).ADSCrossRefGoogle Scholar
  108. 108.
    F. R. Fan, Z. Q. Tian, and Z. L. Wang, Nano Energy 1, 328 (2012).CrossRefGoogle Scholar
  109. 109.
    U. Khan, and S. W. Kim, ACS Nano 10, 6429 (2016).CrossRefGoogle Scholar
  110. 110.
    Z. L. Wang, J. Chen, and L. Lin, Energy Environ. Sci. 8, 2250 (2015).CrossRefGoogle Scholar
  111. 111.
    S. Niu, Y. Liu, S. Wang, L. Lin, Y. S. Zhou, Y. Hu, and Z. L. Wang, Adv. Funct. Mater. 24, 3332 (2014).CrossRefGoogle Scholar
  112. 112.
    S. Niu, S. Wang, L. Lin, Y. Liu, Y. S. Zhou, Y. Hu, and Z. L. Wang, Energy Environ. Sci. 6, 3576 (2013).CrossRefGoogle Scholar
  113. 113.
    K. Y. Lee, J. Chun, J. H. Lee, K. N. Kim, N. R. Kang, J. Y. Kim, M. H. Kim, K. S. Shin, M. K. Gupta, J. M. Baik, and S. W. Kim, Adv. Mater. 26, 5037 (2014).CrossRefGoogle Scholar
  114. 114.
    S. Jin, Y. Wang, M. Motlag, S. Gao, J. Xu, Q. Nian, W. Wu, and G. J. Cheng, Adv. Mater. 30, 1705840 (2018).CrossRefGoogle Scholar
  115. 115.
    J. Xiong, M. F. Lin, J. Wang, S. L. Gaw, K. Parida, and P. S. Lee, Adv. Energy Mater. 7, 1701243 (2017).CrossRefGoogle Scholar
  116. 116.
    H. T. Baytekin, A. Z. Patashinski, M. Branicki, B. Baytekin, S. Soh, and B. A. Grzybowski, Science 333, 308 (2011).ADSCrossRefGoogle Scholar
  117. 117.
    J. Liu, W. Tang, X. Meng, L. Zhan, W. Xu, Z. Nie, and Z. Wang, ACS Omega 3, 12229 (2018).CrossRefGoogle Scholar
  118. 118.
    C. Li, Y. Yin, B. Wang, T. Zhou, J. Wang, J. Luo, W. Tang, R. Cao, Z. Yuan, N. Li, X. Du, C. Wang, S. Zhao, Y. Liu, and Z. L. Wang, ACS Nano 11, 10439 (2017).CrossRefGoogle Scholar
  119. 119.
    Y. Liu, L. Moevius, X. Xu, T. Qian, J. M. Yeomans, and Z. Wang, Nat. Phys. 10, 515 (2014), arXiv: 1406.3203.CrossRefGoogle Scholar
  120. 120.
    C. Clanet, C. Béguin, D. Richard, and D. Quéré, J. Fluid Mech. 517, 199 (2004).ADSCrossRefGoogle Scholar
  121. 121.
    X. Tian, T. Verho, and R. H. A. Ras, Science 352, 142 (2016).ADSCrossRefGoogle Scholar
  122. 122.
    S. Moulinet, and D. Bartolo, Eur. Phys. J. E 24, 251 (2007).CrossRefGoogle Scholar
  123. 123.
    S. Amini, S. Kolle, L. Petrone, O. Ahanotu, S. Sunny, C. N. Sutanto, S. Hoon, L. Cohen, J. C. Weaver, J. Aizenberg, N. Vogel, and A. Miserez, Science 357, 668 (2017).ADSCrossRefGoogle Scholar
  124. 124.
    D. Choi, D. W. Kim, D. Yoo, K. J. Cha, M. La, and D. S. Kim, Nano Energy 36, 250 (2017).CrossRefGoogle Scholar
  125. 125.
    T. S. Wong, S. H. Kang, S. K. Y. Tang, E. J. Smythe, B. D. Hatton, A. Grinthal, and J. Aizenberg, Nature 477, 443 (2011).ADSCrossRefGoogle Scholar
  126. 126.
    P. Kim, T. S. Wong, J. Alvarenga, M. J. Kreder, W. E. Adorno-Martinez, and J. Aizenberg, ACS Nano 6, 6569 (2012).CrossRefGoogle Scholar
  127. 127.
    K. Rykaczewski, S. Anand, S. B. Subramanyam, and K. K. Varanasi, Langmuir 29, 5230 (2013).CrossRefGoogle Scholar
  128. 128.
    B. P. Jelle, Energy Buildings 67, 334 (2013).CrossRefGoogle Scholar
  129. 129.
    Z. He, K. Liu, and J. Wang, Acc. Chem. Res. 51, 1082 (2018).CrossRefGoogle Scholar
  130. 130.
    S. A. Kulinich, S. Farhadi, K. Nose, and X. W. Du, Langmuir 27, 25 (2011).CrossRefGoogle Scholar
  131. 131.
    P. Guo, Y. Zheng, M. Wen, C. Song, Y. Lin, and L. Jiang, Adv. Mater. 24, 2642 (2012).CrossRefGoogle Scholar
  132. 132.
    J. B. Boreyko, and C. P. Collier, ACS Nano 7, 1618 (2013).CrossRefGoogle Scholar
  133. 133.
    X. Chen, R. Ma, H. Zhou, X. Zhou, L. Che, S. Yao, and Z. Wang, Sci. Rep. 3, 2515 (2013).ADSCrossRefGoogle Scholar
  134. 134.
    J. Lv, Y. Song, L. Jiang, and J. Wang, ACS Nano 8, 3152 (2014).CrossRefGoogle Scholar
  135. 135.
    N. Miljkovic, R. Enright, Y. Nam, K. Lopez, N. Dou, J. Sack, and E. N. Wang, Nano Lett. 13, 179 (2012).ADSCrossRefGoogle Scholar
  136. 136.
    L. Cao, A. K. Jones, V. K. Sikka, J. Wu, and D. Gao, Langmuir 25, 12444 (2009).CrossRefGoogle Scholar
  137. 137.
    P. W. Wilson, W. Lu, H. Xu, P. Kim, M. J. Kreder, J. Alvarenga, and J. Aizenberg, Phys. Chem. Chem. Phys. 15, 581 (2013).CrossRefGoogle Scholar
  138. 138.
    S. Sett, X. Yan, G. Barac, L. W. Bolton, and N. Miljkovic, ACS Appl. Mater. Interfaces 9, 36400 (2017).CrossRefGoogle Scholar
  139. 139.
    J. Chen, R. Dou, D. Cui, Q. Zhang, Y. Zhang, F. Xu, X. Zhou, J. Wang, Y. Song, and L. Jiang, ACS Appl. Mater. Interfaces 5, 4026 (2013).CrossRefGoogle Scholar
  140. 140.
    J. D. Smith, R. Dhiman, S. Anand, E. Reza-Garduno, R. E. Cohen, G. H. McKinley, and K. K. Varanasi, Soft Matter 9, 1772 (2013).ADSCrossRefGoogle Scholar
  141. 141.
    S. B. Subramanyam, K. Rykaczewski, and K. K. Varanasi, Langmuir 29, 13414 (2013).CrossRefGoogle Scholar
  142. 142.
    M. J. Nine, T. T. Tung, F. Alotaibi, D. N. H. Tran, and D. Losic, ACS Appl. Mater. Interfaces 9, 8393 (2017).CrossRefGoogle Scholar
  143. 143.
    C. Howell, T. L. Vu, C. P. Johnson, X. Hou, O. Ahanotu, J. Alvarenga, D. C. Leslie, O. Uzun, A. Waterhouse, P. Kim, M. Super, M. Aizenberg, D. E. Ingber, and J. Aizenberg, Chem. Mater. 27, 1792 (2015).CrossRefGoogle Scholar
  144. 144.
    J. Eisenhaure, and S. Kim, Micromachines 8, 125 (2017).CrossRefGoogle Scholar
  145. 145.
    J. Yang, R. Bai, and Z. Suo, Adv. Mater. 30, 1800671 (2018).CrossRefGoogle Scholar
  146. 146.
    S. Baik, H. J. Lee, D. W. Kim, J. W. Kim, Y. Lee, and C. Pang, Adv. Mater. 405, 1803309 (2019).CrossRefGoogle Scholar
  147. 147.
    S. Singla, G. Amarpuri, N. Dhopatkar, T. A. Blackledge, and A. Dhinojwala, Nat. Commun. 9, 1890 (2018).ADSCrossRefGoogle Scholar
  148. 148.
    T. W. Kim, and B. Bhushan, Ultramicroscopy 107, 902 (2007).CrossRefGoogle Scholar
  149. 149.
    H. E. Jeong, J. K. Lee, H. N. Kim, S. Heup Moon, and K. Y. Suh, Proc. Natl. Acad. Sci. USA 106, 5639 (2009).ADSCrossRefGoogle Scholar
  150. 150.
    D. Y. Lee, D. H. Lee, S. G. Lee, and K. Cho, Soft Matter 8, 4905 (2012).ADSCrossRefGoogle Scholar
  151. 151.
    H. S. Im, J. U. Kim, S. Han, and T. I. Kim, Polymers 8, 326 (2016).CrossRefGoogle Scholar
  152. 152.
    J. Liu, and O. A. Scherman, Adv. Funct. Mater. 28, 1800848 (2018).CrossRefGoogle Scholar
  153. 153.
    Z. Qin, and M. J. Buehler, J. Mech. Phys. Solids 62, 19 (2014).ADSCrossRefGoogle Scholar
  154. 154.
    Y. Zhao, Y. Wu, L. Wang, M. Zhang, X. Chen, M. Liu, J. Fan, J. Liu, F. Zhou, and Z. Wang, Nat. Commun. 8, 2218 (2017).ADSCrossRefGoogle Scholar
  155. 155.
    G. Ju, M. Cheng, F. Guo, Q. Zhang, and F. Shi, Angew. Chem. Int. Ed. 57, 8963 (2018).CrossRefGoogle Scholar
  156. 156.
    S. Palagi, and P. Fischer, Nat. Rev. Mater. 3, 113 (2018).ADSCrossRefGoogle Scholar
  157. 157.
    N. W. Bartlett, M. T. Tolley, J. T. B. Overvelde, J. C. Weaver, B. Mosadegh, K. Bertoldi, G. M. Whitesides, and R. J. Wood, Science 349, 161 (2015).ADSCrossRefGoogle Scholar
  158. 158.
    A. Ghosh, and P. Fischer, Nano Lett. 9, 2243 (2009).ADSCrossRefGoogle Scholar
  159. 159.
    J. Li, S. Sattayasamitsathit, R. Dong, W. Gao, R. Tam, X. Feng, S. Ai, and J. Wang, Nanoscale 6, 9415 (2014).ADSCrossRefGoogle Scholar
  160. 160.
    S. Li, R. Batra, D. Brown, H. D. Chang, N. Ranganathan, C. Hoberman, D. Rus, and H. Lipson, Nature 567, 361 (2019).ADSCrossRefGoogle Scholar
  161. 161.
    Y. Kim, H. Yuk, R. Zhao, S. A. Chester, and X. Zhao, Nature 558, 274 (2018).ADSCrossRefGoogle Scholar
  162. 162.
    R. F. Shepherd, F. Ilievski, W. Choi, S. A. Morin, A. A. Stokes, A. D. Mazzeo, X. Chen, M. Wang, and G. M. Whitesides, Proc. Natl. Acad. Sci. USA 108, 20400 (2011).ADSCrossRefGoogle Scholar
  163. 163.
    B. Shin, J. Ha, M. Lee, K. Park, G. H. Park, T. H. Choi, K. J. Cho, and H. Y. Kim, Sci. Robot. 3, eaar2629 (2018).CrossRefGoogle Scholar
  164. 164.
    F. Connolly, C. J. Walsh, and K. Bertoldi, Proc. Natl. Acad. Sci. USA 114, 51 (2017).ADSCrossRefGoogle Scholar
  165. 165.
    D. Rus, and M. T. Tolley, Nature 521, 467 (2015).ADSCrossRefGoogle Scholar
  166. 166.
    M. Wehner, R. L. Truby, D. J. Fitzgerald, B. Mosadegh, G. M. Whitesides, J. A. Lewis, and R. J. Wood, Nature 536, 451 (2016).ADSCrossRefGoogle Scholar
  167. 167.
    F. Ilievski, A. D. Mazzeo, R. F. Shepherd, X. Chen, and G. M. Whitesides, Angew. Chem. Int. Ed. 50, 1890 (2011).CrossRefGoogle Scholar
  168. 168.
    E. Brown, N. Rodenberg, J. Amend, A. Mozeika, E. Steltz, M. R. Zakin, H. Lipson, and H. M. Jaeger, Proc. Natl. Acad. Sci. USA 107, 18809 (2010), arXiv: 1009.4444.ADSCrossRefGoogle Scholar
  169. 169.
    B. S. Homberg, R. K. Katzschmann, M. R. Dogar, and D. Rus, Auton Robot 43, 681 (2019).CrossRefGoogle Scholar
  170. 170.
    I. Must, E. Sinibaldi, and B. Mazzolai, Nat. Commun. 10, 344 (2019).ADSCrossRefGoogle Scholar
  171. 171.
    J. Wang, M. F. Lin, S. Park, and P. S. Lee, Mater. Today 21, 508 (2018).CrossRefGoogle Scholar
  172. 172.
    H. H. Chou, A. Nguyen, A. Chortos, J. W. F. To, C. Lu, J. Mei, T. Kurosawa, W. G. Bae, J. B. H. Tok, and Z. Bao, Nat. Commun. 6, 8011 (2015).ADSCrossRefGoogle Scholar
  173. 173.
    C. M. Boutry, M. Negre, M. Jorda, O. Vardoulis, A. Chortos, O. Khatib, and Z. Bao, Sci. Robot. 3, eaau6914 (2018).CrossRefGoogle Scholar
  174. 174.
    H. Zhao, K. O’Brien, S. Li, R. F. Shepherd, Sci. Robot. 1, eaai7529 (2016).CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringCity University of Hong KongHong KongChina
  2. 2.MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations