Skip to main content
Log in

Entanglement purification for memory nodes in a quantum network

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The entanglement between quantum memory nodes is a prerequisite in a quantum network, and the diamond nitrogen-vacancy (NV) center is a promising candidate serving as a quantum memory node. Here, we investigate the possibility of achieving an entanglement purification protocol (EPP) for entangled NV centers in distant diamonds. To construct the EPP, we design a nondestructive parity-check detector (PCD) utilizing an auxiliary polarization-entangled photon pair, which makes our EPP less time consuming and insensitive to the phase fluctuation of the optical path length. The satisfied fidelity of an NV center pair after purification and efficiency of obtaining a purified NV center pair with our EPP can be obtained with current experimental techniques in the realistic condition. This EPP is useful for a quantum network in which NV centers are used as quantum memory nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Jiang, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, Phys. Rev. A 76, 062323 (2007), arXiv: 0709.4539.

    ADS  Google Scholar 

  2. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).

    ADS  MathSciNet  Google Scholar 

  3. C. H. Bennett, and S. J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992).

    ADS  MathSciNet  Google Scholar 

  4. A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).

    ADS  MathSciNet  Google Scholar 

  5. C. H. Bennett, G. Brassard, and N. D. Mermin, Phys. Rev. Lett. 68, 557 (1992).

    ADS  MathSciNet  Google Scholar 

  6. X. H. Li, F. G. Deng, and H. Y. Zhou, Phys. Rev. A 78, 022321 (2008), arXiv: 0808.0042.

    ADS  Google Scholar 

  7. B. K. Park, M. S. Lee, M. K. Woo, Y. S. Kim, S. W. Han, and S. Moon, Sci. China-Phys. Mech. Astron. 60, 060311 (2017).

    ADS  Google Scholar 

  8. M. Hillery, V. Bužek, and A. Berthiaume, Phys. Rev. A 59, 1829 (1999).

    ADS  MathSciNet  Google Scholar 

  9. G. L. Long, and X. S. Liu, Phys. Rev. A 65, 032302 (2002).

    ADS  Google Scholar 

  10. F. G. Deng, G. L. Long, and X. S. Liu, Phys. Rev. A 68, 042317 (2003).

    ADS  Google Scholar 

  11. C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, Phys. Rev. A 71, 044305 (2005).

    ADS  Google Scholar 

  12. W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, Phys. Rev. Lett. 118, 220501 (2017), arXiv: 1609.09184.

    ADS  Google Scholar 

  13. F. Zhu, W. Zhang, Y. Sheng, and Y. Huang, Sci. Bull. 62, 1519 (2017).

    Google Scholar 

  14. P. H. Niu, Z. R. Zhou, Z. S. Lin, Y. B. Sheng, L. G. Yin, and G. L. Long, Sci. Bull. 63, 1345 (2018).

    Google Scholar 

  15. S. S. Chen, L. Zhou, W. Zhong, and Y. B. Sheng, Sci. China-Phys. Mech. Astron. 61, 090312 (2018).

    Google Scholar 

  16. R. Y. Qi, Z. Sun, Z. S. Lin, P. H. Niu, W. T. Hao, L. Y. Song, Q. Huang, J. C. Gao, L. G. Yin, and G. L. Long, Light Sci. Appl. 8, 22 (2019), arXiv: 1810.11806.

    ADS  Google Scholar 

  17. H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Phys. Rev. A 81, 5932 (1998).

    Google Scholar 

  18. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Nature 414, 413 (2001).

    ADS  Google Scholar 

  19. T. J. Wang, S. Y. Song, and G. L. Long, Phys. Rev. A 85, 062311 (2012).

    ADS  Google Scholar 

  20. T. Li, G. J. Yang, and F. G. Deng, Phys. Rev. A 93, 012302 (2016), arXiv: 1409.0270.

    ADS  Google Scholar 

  21. N. Kalb, A. A. Reiserer, P. C. Humphreys, J. J. W. Bakermans, S. J. Kamerling, N. H. Nickerson, S. C. Benjamin, D. J. Twitchen, M. Markham, and R. Hanson, Science 356, 928 (2017), arXiv: 1703.03244.

    ADS  MathSciNet  Google Scholar 

  22. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, Phys. Rev. Lett. 76, 722 (1996).

    ADS  Google Scholar 

  23. D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, Phys. Rev. Lett. 77, 2818 (1996).

    ADS  Google Scholar 

  24. J. W. Pan, C. Simon, Brukner, and A. Zeilinger, Nature 410, 1067 (2001).

    ADS  Google Scholar 

  25. C. Simon, and J. W. Pan, Phys. Rev. Lett. 89, 257901 (2002).

    ADS  Google Scholar 

  26. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, Phys. Rev. A 77, 042308 (2008), arXiv: 0805.0032.

    ADS  Google Scholar 

  27. B. C. Ren, F. F. Du, and F. G. Deng, Phys. Rev. A 90, 052309 (2014), arXiv: 1408.0048.

    ADS  Google Scholar 

  28. G. Y. Wang, Q. Liu, and F. G. Deng, Phys. Rev. A 94, 032319 (2016), arXiv: 1607.00082.

    ADS  Google Scholar 

  29. Y. B. Sheng, and F. G. Deng, Phys. Rev. A 81, 032307 (2010), arXiv: 0912.0079.

    ADS  Google Scholar 

  30. Y. B. Sheng, and F. G. Deng, Phys. Rev. A 82, 044305 (2010), arXiv: 1008.3509.

    ADS  Google Scholar 

  31. X. H. Li, Phys. Rev. A 82, 044304 (2010), arXiv: 1010.5301.

    ADS  Google Scholar 

  32. F. G. Deng, Phys. Rev. A 83, 062316 (2011), arXiv: 1107.0093.

    ADS  Google Scholar 

  33. L. Zhou, and Y. B. Sheng, Sci. Rep. 6, 28813 (2016), arXiv: 1511.02344.

    ADS  Google Scholar 

  34. L. Zhou, and Y. B. Sheng, Ann. Phys. 385, 10 (2017).

    ADS  Google Scholar 

  35. M. Yang, W. Song, and Z. L. Cao, Phys. Rev. A 71, 012308 (2005).

    ADS  Google Scholar 

  36. C. D. Ogden, M. Paternostro, and M. S. Kim, Phys. Rev. A 75, 042325 (2007).

    ADS  Google Scholar 

  37. C. Cao, C. Wang, L. He, and R. Zhang, Opt. Express 21, 4093 (2013).

    ADS  Google Scholar 

  38. T. Li, G. J. Yang, and F. G. Deng, Opt. Express 22, 23897 (2014), arXiv: 1403.4660.

    ADS  Google Scholar 

  39. R. Reichle, D. Leibfried, E. Knill, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, Nature 443, 838 (2006).

    ADS  Google Scholar 

  40. N. Kalb, A. A. Reiserer, P. C. Humphreys, J. J. W. Bakermans, S. J. Kamerling, N. H. Nickerson, S. C. Benjamin, D. J. Twitchen, M. Markham, and R. Hanson, Science 356, 928 (2017), arXiv: 1703.03244.

    ADS  MathSciNet  Google Scholar 

  41. X. L. Feng, L. C. Kwek, and C. H. Oh, Phys. Rev. A 71, 064301 (2005).

    ADS  Google Scholar 

  42. C. Wang, Y. Zhang, and G. Jin, Phys. Rev. A 84, 032307 (2011).

    ADS  Google Scholar 

  43. W. C. Gao, C. Cao, T. J. Wang, and C. Wang, Quantum Inf. Process. 16, 182 (2017).

    ADS  Google Scholar 

  44. Z. C. Liu, J. S. Hong, J. J. Guo, T. Li, Q. Ai, A. Alsaedi, T. Hayat, and F. G. Deng, Annalen Der Physik 530, 1800029 (2018), arXiv: 1809.00117.

    ADS  MathSciNet  Google Scholar 

  45. S. M. Hein, C. Aron, and H. E. Türeci, Phys. Rev. A 93, 062331 (2016), arXiv: 1604.07198.

    ADS  Google Scholar 

  46. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, Nat. Mater 8, 383 (2009).

    ADS  Google Scholar 

  47. F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, Phys. Rev. Lett. 92, 076401 (2004).

    ADS  Google Scholar 

  48. L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, Science 314, 281 (2006).

    ADS  Google Scholar 

  49. G. D. Fuchs, V. V. Dobrovitski, D. M. Toyli, F. J. Heremans, and D. D. Awschalom, Science 326, 1520 (2009).

    ADS  Google Scholar 

  50. J. Wrachtrup, S. Y. Kilin, and A. P. Nizovtsev, Opt. Spectrosc. 91, 429 (2001).

    ADS  Google Scholar 

  51. L. Childress, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, Phys. Rev. Lett. 96, 070504 (2006).

    ADS  Google Scholar 

  52. S. D. Barrett, and P. Kok, Phys. Rev. A 71, 060310 (2005).

    ADS  Google Scholar 

  53. B. M. Chernobrod, and G. P. Berman, J. Appl. Phys. 97, 014903 (2005).

    ADS  Google Scholar 

  54. L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, Nature 477, 574 (2011), arXiv: 1301.0392.

    ADS  Google Scholar 

  55. D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, Nano Lett. 10, 3168 (2010), arXiv: 1007.0240.

    ADS  Google Scholar 

  56. Q. Chen, W. Yang, M. Feng, and J. Du, Phys. Rev. A 83, 054305 (2011).

    ADS  Google Scholar 

  57. H. R. Wei, and F. G. Deng, Phys. Rev. A 88, 042323 (2013), arXiv: 1310.0197.

    ADS  Google Scholar 

  58. T. J. Wang, and C. Wang, Phys. Rev. A 90, 052310 (2014).

    ADS  Google Scholar 

  59. B. C. Ren, G. Y. Wang, and F. G. Deng, Phys. Rev. A 91, 032328 (2015), arXiv: 1411.0274.220311–8

    ADS  Google Scholar 

  60. B. C. Ren, and F. G. Deng, Laser Phys. Lett. 10, 115201 (2013), arXiv: 1309.0168.

    ADS  Google Scholar 

  61. C. Wang, T. J. Wang, Y. Zhang, R. Jiao, and G. Jin, Opt. Express 22, 1551 (2014).

    ADS  Google Scholar 

  62. T. Li, A. Miranowicz, X. Hu, K. Xia, and F. Nori, Phys. Rev. A 97, 062318 (2018), arXiv: 1803.05626.

    Google Scholar 

  63. Y. S. Park, A. K. Cook, and H. Wang, Nano Lett. 6, 2075 (2006).

    ADS  Google Scholar 

  64. M. Larsson, K. N. Dinyari, and H. Wang, Nano Lett. 9, 1447 (2009).

    ADS  Google Scholar 

  65. R. J. Barbour, K. N. Dinyari, and H. Wang, Opt. Express 18, 18968 (2010).

    ADS  Google Scholar 

  66. P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, Appl. Phys. Lett. 95, 191115 (2009), arXiv: 0908.2148.

    ADS  Google Scholar 

  67. M. W. McCutcheon, and M. Lončar, Opt. Express 16, 19136 (2008).

    ADS  Google Scholar 

  68. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, Nature 466, 730 (2010).

    ADS  Google Scholar 

  69. B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, Science 319, 1062 (2008).

    ADS  Google Scholar 

  70. J. H. An, M. Feng, and C. H. Oh, Phys. Rev. A 79, 032303 (2009), arXiv: 0902.1372.

    ADS  Google Scholar 

  71. C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, Phys. Rev. B 78, 085307 (2008), arXiv: 0708.2019.

    ADS  Google Scholar 

  72. D. F. Walls, and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994).

    MATH  Google Scholar 

  73. A. Yabushita, and T. Kobayashi, Phys. Rev. A 69, 013806 (2004).

    ADS  Google Scholar 

  74. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).

    ADS  Google Scholar 

  75. Z. Yang, O. S. Magaña-Loaiza, M. Mirhosseini, Y. Zhou, B. Gao, L. Gao, S. M. H. Rafsanjani, G. L. Long, and R. W. Boyd, Light Sci. Appl. 6, e17013 (2017), arXiv: 1609.08741.

    ADS  Google Scholar 

  76. P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, Phys. Rev. A 75, 4337 (1995).

    ADS  Google Scholar 

  77. M. Wang, R. Wu, J. Lin, J. Zhang, Z. Fang, Z. Chai, and Y. Cheng, Quantum Eng. 1, e9 (2019).

    Google Scholar 

  78. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, IEEE J. Sel. Top. Quantum Electron. 6, 69 (2000).

    ADS  Google Scholar 

  79. S. Atzeni, A. S. Rab, G. Corrielli, E. Polino, M. Valeri, P. Mataloni, N. Spagnolo, A. Crespi, F. Sciarrino, and R. Osellame, Optica 5, 311 (2018).

    ADS  Google Scholar 

  80. R. Osellame, Quantum Eng. 1, e11 (2019).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuiLu Long.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Long, G. Entanglement purification for memory nodes in a quantum network. Sci. China Phys. Mech. Astron. 63, 220311 (2020). https://doi.org/10.1007/s11433-019-9443-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-9443-2

Navigation