Skip to main content
Log in

Dewetting in associating lattice gas model confined by hydrophobic walls

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The phase behavior of a two dimensional fluid confined within hydrophobic walls is obtained by Monte Carlo simulations. The fluid is described by the associating lattice gas model which reproduces the density and diffusion anomalous behavior of water. The confined fluid exhibits a liquid-liquid critical temperature which decreases with the decrease of the distance between the confining walls. In contact with the wall a dewetting is observed. The thickness of this interfacial layer is independent of the distance between the two walls. Even for very small distances between the two walls no total depletion is observed and consequently no drying transition is present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Ternes, E. Salcedo, and M. C. Barbosa, Phys. Rev. E 97, 033104 (2018), arXiv: 1801.03568.

    ADS  Google Scholar 

  2. O. Beckstein, and M. S. P. Sansom, Proc. Natl. Acad. Sci. USA 100, 7063 (2003).

    ADS  Google Scholar 

  3. E. Tajkhorshid, P. Nollert, M. Ø. Jensen, L. J. W. Miercke, J. O’Connell, R. M. Stroud, and K. Schulten, Science 296, 525 (2002).

    ADS  Google Scholar 

  4. K. Murata, K. Mitsuoka, T. Hirai, T. Walz, P. Agre, J. B. Heymann, A. Engel, and Y. Fujiyoshi, Nature 407, 599 (2000).

    ADS  Google Scholar 

  5. D. Fu, A. Libson, L. J. W. Miercke, C. Weitzman, P. Nollert, J. Krucinski, and R. M. Stroud, Science 290, 481 (2000).

    ADS  Google Scholar 

  6. H. Sui, B. G. Han, J. K. Lee, P. Walian, and B. K. Jap, Nature 414, 872 (2001).

    ADS  Google Scholar 

  7. M. R. Harpham, B. M. Ladanyi, N. E. Levinger, and K. W. Herwig, J. Chem. Phys. 121, 7855 (2004).

    ADS  Google Scholar 

  8. K. Wu, Z. Chen, J. Li, X. Li, J. Xu, and X. Dong, Proc. Natl. Acad. Sci. USA 114, 3358 (2017).

    ADS  Google Scholar 

  9. V. Saraswat, R. M. Jacobberger, J. S. Ostrander, C. L. Hummell, A. J. Way, J. Wang, M. T. Zanni, and M. S. Arnold, ACS Nano 12, 7855 (2018).

    Google Scholar 

  10. J. K. Holt, H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, and O. Bakajin, Science 312, 1034 (2006).

    ADS  Google Scholar 

  11. M. H. Kohler, J. R. Bordin, and M. C. Barbosa, J. Mol. Liquids 277, 516 (2019).

    Google Scholar 

  12. L. Liu, S. H. Chen, A. Faraone, C. W. Yen, and C. Y. Mou, Phys. Rev. Lett. 95, 117802 (2005).

    ADS  Google Scholar 

  13. L. Xu, P. Kumar, S. V. Buldyrev, S. H. Chen, P. H. Poole, F. Sciortino, and H. E. Stanley, Proc. Natl. Acad. Sci. USA 102, 16558 (2005).

    ADS  Google Scholar 

  14. P. Gallo, M. Rovere, and S. H. Chen, J. Phys. Chem. Lett. 1, 729 (2010).

    Google Scholar 

  15. S. Cerveny, F. Mallamace, J. Swenson, M. Vogel, and L. Xu, Chem. Rev. 116, 7608 (2016).

    Google Scholar 

  16. F. H. Stillinger, J Solution Chem 2, 141 (1973).

    Google Scholar 

  17. K. Lum, D. Chandler, and J. D. Weeks, Int. J. Food Prop. 103, 4570 (1999).

    Google Scholar 

  18. T. R. Jensen, M. Østergaard Jensen, N. Reitzel, K. Balashev, G. H. Peters, K. Kjaer, and T. Bjørnholm, Phys. Rev. Lett. 90, 086101 (2003).

    ADS  Google Scholar 

  19. D. Schwendel, T. Hayashi, R. Dahint, A. Pertsin, M. Grunze, R. Steitz, and F. Schreiber, Langmuir 19, 2284 (2003).

    Google Scholar 

  20. Z. Zhang, S. Ryu, Y. Ahn, and J. Jang, Phys. Chem. Chem. Phys. 20, 30492 (2018).

    Google Scholar 

  21. A. Wallqvistt, and B. J. Berne, J. Phys. Chem. 99, 2893 (1995).

    Google Scholar 

  22. X. Huang, C. J. Margulis, and B. J. Berne, Proc. Natl. Acad. Sci. USA 100, 11953 (2003).

    ADS  Google Scholar 

  23. N. Giovambattista, P. J. Rossky, and P. G. Debenedetti, Phys. Rev. E 73, 41604 (2006).

    ADS  Google Scholar 

  24. N. Giovambattista, P. J. Rossky, and P. G. Debenedetti, J. Phys. Chem. B 113, 13723 (2009).

    Google Scholar 

  25. P. R. ten Wolde, and D. Chandler, Proc. Natl. Acad. Sci. USA 99, 6539 (2002).

    ADS  Google Scholar 

  26. P. Liu, X. Huang, R. Zhou, and B. J. Berne, Nature 437, 159 (2005).

    ADS  Google Scholar 

  27. L. Hua, X. Huang, P. Liu, R. Zhou, and B. J. Berne, J. Phys. Chem. B 111, 9069 (2007).

    Google Scholar 

  28. R. Zhou, X. H. Huang, C. J. Margulis, and B. J. Berne, Science 305, 1605 (2004).

    ADS  Google Scholar 

  29. J. L. MacCallum, M. S. Moghaddam, H. S. Chan, and D. P. Tieleman, Proc. Natl. Acad. Sci. USA 104, 6206 (2007).

    ADS  Google Scholar 

  30. G. Cicero, J. C. Grossman, E. Schwegler, F. Gygi, and G. Galli, J. Am. Chem. Soc. 130, 1871 (2008).

    Google Scholar 

  31. A. Scodinu, and J. T. Fourkas, J. Phys. Chem. B 106, 10292 (2002).

    Google Scholar 

  32. H. I. Kim, J. G. Kushmerick, J. E. Houston, and B. C. Bunker, Langmuir 19, 9271 (2003).

    Google Scholar 

  33. B. Bagchi, Chem. Rev. 105, 3197 (2005).

    Google Scholar 

  34. V. B. Henriques, and M. C. Barbosa, Phys. Rev. E 71, 031504 (2005).

    ADS  Google Scholar 

  35. M. M. Szortyka, and M. C. Barbosa, Physica A 380, 27 (2007).

    ADS  Google Scholar 

  36. M. M. Szortyka, V. B. Henriques, M. Girardi, and M. C. Barbosa, J. Chem. Phys. 130, 184902 (2009), arXiv: 0902.1741.

    ADS  Google Scholar 

  37. P. Kumar, S. V. Buldyrev, F. W. Starr, N. Giovambattista, and H. E. Stanley, Phys. Rev. E 72, 051503 (2005).

    ADS  Google Scholar 

  38. E. B. Moore, J. T. Allen, and V. Molinero, J. Phys. Chem. C 116, 7507 (2012).

    Google Scholar 

  39. A. Barati Farimani, and N. R. Aluru, J. Phys. Chem. C 120, 23763 (2016).

    Google Scholar 

  40. X. Li, J. Li, M. Eleftheriou, and R. Zhou, J. Am. Chem. Soc. 128, 12439 (2006).

    Google Scholar 

  41. J. R. Bordin, L. B. Krott, and M. C. Barbosa, J. Phys. Chem. C 118, 9497 (2014).

    Google Scholar 

  42. F. Leoni, and G. Franzese, J. Chem. Phys. 141, 174501 (2014), arXiv: 1406.1996.

    ADS  Google Scholar 

  43. L. Ruiz Pestana, L. E. Felberg, and T. Head-Gordon, ACS Nano 12, 448 (2018).

    Google Scholar 

  44. B. H. S. Mendonça, D. N. de Freitas, M. H. Köhler, R. J. C. Batista, M. C. Barbosa, and A. B. de Oliveira, Physica A 517, 491 (2019), arXiv: 1803.01084.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tássylla O. Fonseca, Marcia M. Szortyka or Marcia C. Barbosa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fonseca, T.O., Szortyka, M.M., Ternes, P. et al. Dewetting in associating lattice gas model confined by hydrophobic walls. Sci. China Phys. Mech. Astron. 62, 107009 (2019). https://doi.org/10.1007/s11433-019-9416-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-9416-3

Key words

Navigation