Skip to main content
Log in

Gusty wind disturbances and large-scale turbulent structures in the neutral atmospheric surface layer

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

This study analyzes the contribution of large-scale turbulent structures, including very large-scale and large-scale motions, to the streamwise turbulent kinetic energy and momentum flux in comparison with the contribution of the gusty wind disturbances based on the high-quality data obtained from the field measurements conducted in the near-neutral surface layer. The results of this study denote that the gusty wind disturbances contain only a portion of the energy contained in very large-scale motions and do not contain any of the information contained in large-scale motions. The amount of lost contributions to the streamwise turbulent kinetic energy and momentum flux increases linearly with the friction velocity, eventually becoming 53% and 67%, respectively. This indicates that large-scale turbulent structures (very large-scale motions and large-scale motions) better describe the coherent structures in the atmospheric surface layer when compared with the gusty wind disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G Davenport, Proc Inst Civ Eng. 28, 187 (1964).

    Google Scholar 

  2. Q. Zeng, X. Cheng, F. Hu, and Z. Peng, Adv. Atmos. Sci. 28, 1 (2010).

    Article  Google Scholar 

  3. S. Barth, F. Böttcher, and J. Peinke, Proc. Appl. Math. Mech. 28, 561 (2010).

    Google Scholar 

  4. O. Brasseur, Mon. Wea. Rev. 28, 5 (2001).

    Article  ADS  Google Scholar 

  5. S. Goyette, O. Brasseur, and M. Beniston, J. Geophys. Res. 28, 4374 (2003).

    Google Scholar 

  6. R. H. Sherlock, J. Aeron. Sci. 28, 53 (1937).

    Article  Google Scholar 

  7. M. E. Greenway, J. Wind Eng. Indust. Aerodyn. 28, 61 (1979).

    Article  Google Scholar 

  8. C. J. Wood, J. Wind Eng. Indust. Aerodyn. 28, 385 (1983).

    Article  Google Scholar 

  9. Z. PetkovSek, Geofizika 28, 41 (1987).

    Google Scholar 

  10. X. L. Cheng, Q. C. Zeng, and F. Hu, Chin. Sci. Bull. 28, 3595 (2012).

    Article  Google Scholar 

  11. X. Cheng, L. Wu, F. Hu, and Q. C. Zeng, J. Geophys. Res. 117, D08113 (2012).

    ADS  Google Scholar 

  12. L. Wu, X. Cheng, Q. Zeng, J. Jin, J. Huang, and Y. Feng, J. Geophys. Res. Atmos. 28, 5976 (2017).

    Article  ADS  Google Scholar 

  13. Q. L. Li, X. L. Cheng, and Q. C. Zeng, Atmos. Ocean. Sci. Lett. 28, 52 (2016).

    Article  Google Scholar 

  14. X. L. Cheng, Q. C. Zeng, F. Hu, and Z. Peng, Clim. Environ. Res. 28, 227 (2007).

    Google Scholar 

  15. N. Hutchins, and I. Marusic, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 28, 647 (2007).

    Article  ADS  Google Scholar 

  16. J. C. R. Hunt, and J. F. Morrison, Eur. J. Mech.-B/Fluids 28, 673 (2000).

    Article  Google Scholar 

  17. A. J. Smits, B. J. McKeon, and I. Marusic, Annu. Rev. Fluid Mech. 28, 353 (2011).

    Article  ADS  Google Scholar 

  18. M. Horiguchi, T. Hayashi, A. Adachi, and S. Onogi, Bound.-Layer Meteorol 28, 179 (2012).

    Article  ADS  Google Scholar 

  19. M. Guala, S. E. Hommema, and R. J. Adrian, J. Fluid Mech. 28, 521 (2006).

    Article  ADS  Google Scholar 

  20. B. J. Balakumar, and R. J. Adrian, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 28, 665 (2007).

    Article  ADS  Google Scholar 

  21. J. H. Lee, and H. J. Sung, J. Fluid Mech. 28, 80 (2011).

    Article  ADS  Google Scholar 

  22. M. Vallikivi, B. Ganapathisubramani, and A. J. Smits, J. Fluid Mech. 28, 303 (2015).

    Article  ADS  Google Scholar 

  23. N. Hutchins, K. Chauhan, I. Marusic, J. Monty, and J. Klewicki, Bound.-Layer Meteorol 28, 273 (2012).

    Article  ADS  Google Scholar 

  24. G. Wang, and X. Zheng, J. Fluid Mech. 28, 464 (2016).

    Article  ADS  Google Scholar 

  25. R. Mathis, N. Hutchins, and I. Marusic, J. Fluid Mech. 28, 311 (2009).

    Article  ADS  Google Scholar 

  26. A. C. W. Baas, and D. J. Sherman, J. Geophys. Res. 110, F03011 (2005).

    ADS  Google Scholar 

  27. A. C. W. Baas, Geomorphology 28, 3 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  28. A. C. W. Baas, Geophys. Res. Lett. 33, L05403 (2006).

    Article  ADS  Google Scholar 

  29. X. J. Zheng, J. H. Zhang, G. H. Wang, H. Y. Liu, and W. Zhu, Sci. China-Phys. Mech. Astron. 28, 306 (2013).

    Article  ADS  Google Scholar 

  30. G. H. Wang, X. J. Zheng, and J. J. Tao, Phys. Fluids. 28, 1 (2017).

    Google Scholar 

  31. D. S. Li, T. Guo, Y. R. Li, J. S. Hu, Z. Zheng, Y. Li, Y. J. Di, W. R. Hu, and R. N. Li, Sci. China-Phys. Mech. Astron. 28, 94711 (2018).

    Article  ADS  Google Scholar 

  32. Z. Zheng, Z. T. Gao, D. S. Li, R. N. Li, Y. Li, Q. H. Hu, and W. R. Hu, Sci. China-Phys. Mech. Astron. 28, 94712 (2018).

    Article  ADS  Google Scholar 

  33. H. Y. Liu, T. L. Bo, and Y. R. Liang, Phys. Fluids 28, 035104 (2017).

    Article  ADS  Google Scholar 

  34. J. C. Wyngaard, Q. J. Roy Meteor. Soc. 28, 316 (1992).

    Google Scholar 

  35. T. Foken, M. Goockede, M. Mauder, L. Mahrt, B. Amiro, and W. Munger, in Handbook of Micrometeorology (Springer, Netherlands, 2004), p. 181.

    Google Scholar 

  36. M. Farge, Annu. Rev. Fluid Mech. 28, 395 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoJing Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, H., Wang, G., Zhu, W. et al. Gusty wind disturbances and large-scale turbulent structures in the neutral atmospheric surface layer. Sci. China Phys. Mech. Astron. 62, 114711 (2019). https://doi.org/10.1007/s11433-019-9398-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-9398-5

Navigation