Skip to main content

The radiation structure of PSR B2016+28 observed with FAST

Abstract

With the largest dish Five-hundred-meter Aperture Spherical radio Telescope (FAST), both the mean and single pulses of PSR B2016+28, especially including the single-pulse structure, are investigated in detail in this study. The mean pulse profiles at different frequencies can be well fitted in a conal model, and the peak separation of intensity-dependent pulse profiles increases with intensity. The integrated pulses are obviously frequency dependent (pulse width decreases by ~20% as frequency increases from 300 to 750 MHz), but the structure of single pulses changes slightly (the corresponding correlation scale decreases by only ~1%). This disparity between mean and single pulses provides independent evidence for the existence of the RS-type vacuum inner gap, indicating a strong bond between particles on the pulsar surface. Diffused drifting sub-pulses are analyzed. The results show that the modulation period along pulse series (P3) is positively correlated to the separation between two adjacent sub-pulses (P2). This correlation may hint a rough surface on the pulsar, eventually resulting in the irregular drift of sparks. All the observational results may have significant implications in the dynamics of pulsar magnetosphere and are discussed extensively in this paper.

This is a preview of subscription content, access via your institution.

References

  1. J. G. Lu, and R. X. Xu, JPS Conf. Proc. 20, 011026 (2018).

    Google Scholar 

  2. M. A. Ruderman, and P. G. Sutherland, Astrophys. J. 196, 51 (1975).

    ADS  Article  Google Scholar 

  3. J. Gil, G. I. Melikidze, and U. Geppert, Astron. Astrophys. 407, 315 (2003).

    ADS  Article  Google Scholar 

  4. R. X. Xu, G. J. Qiao, and B. Zhang, Astrophys. J. 522, L109 (1999).

    ADS  Article  Google Scholar 

  5. B. Peng, R. G. Strom, R. Nan, E. Ma, J. Ping, L. Zhu, and W. Zhu, in Science with FAST: Perspectives on Radio Astronomy: Science with Large Antenna Arrays, Proceedings of the Conference held at the Royal Netherlands Academy of Arts and Sciences in Amsterdam on 7–9 April 1999, edited by M. P. van Haarlem (ASTRON, Amsterdam, 2000), p. 25.

  6. B. Peng, R. Nan, and Y. Su, in Proposed world’s largest single dish: FAST: Proceedings Volume 4015, Radio Telescopes (SPIE, Munich, 2000).

    Google Scholar 

  7. D. R. Lorimer, J. A. Yates, A. G. Lyne, and D. M. Gould, Mon. Not. R. Astron. Soc. 273, 411 (1995).

    ADS  Article  Google Scholar 

  8. G. Hobbs, A. G. Lyne, M. Kramer, C. E. Martin, and C. Jordan, Mon. Not. R. Astron. Soc. 353, 1311 (2004).

    ADS  Article  Google Scholar 

  9. K. Stovall, P. S. Ray, J. Blythe, J. Dowell, T. Eftekhari, A. Garcia, T. J. W. Lazio, M. McCrackan, F. K. Schinzel, and G. B. Taylor, Astrophys. J. 808, 156 (2015), arXiv: 1410.7422.

    ADS  Article  Google Scholar 

  10. L. Oster, D. A. Hilton, and W. Sieber, Astron. Astrophys. 57, 1 (1977).

    ADS  Google Scholar 

  11. J. M. Rankin, Astrophys. J. 274, 333 (1983).

    ADS  Article  Google Scholar 

  12. P. Weltevrede, R. T. Edwards, and B. W. Stappers, Astron. Astrophys. 445, 243 (2006).

    ADS  Article  Google Scholar 

  13. F. D. Drake, and H. D. Craft, Nature 220, 231 (1968).

    ADS  Article  Google Scholar 

  14. J. H. Taylor, R. N. Manchester, and G. R. Huguenin, Astrophys. J. 195, 513 (1975).

    ADS  Article  Google Scholar 

  15. J. M. Rankin, Astrophys. J. 301, 901 (1986).

    ADS  Article  Google Scholar 

  16. P. Weltevrede, B. W. Stappers, and R. T. Edwards, Astron. Astrophys. 469, 607 (2007), arXiv: 0704.3572.

    ADS  Article  Google Scholar 

  17. A. Naidu, B. C. Joshi, P. K. Manoharan, and M. A. KrishnaKumar, Astron. Astrophys. 604, A45 (2017), arXiv: 1704.05048.

    ADS  Article  Google Scholar 

  18. P. Jiang, Y. L. Yue, H. Q. Gan, R. Yao, H. Li, G. F. Pan, J. H. Sun, D. J. Yu, H. F. Liu, N. Y. Tang, L. Qian, J. G. Lu, J. Yan, B. Peng, S. X. Zhang, Q. M. Wang, Q. Li, D. Li, and FAST Collaboration, Sci. China-Phys. Mech. Astron. 62, 959502 (2019), arXiv: 1903.06324.

    Article  Google Scholar 

  19. A.W. Hotan, W. van Straten, and R. N. Manchester, Publ. Astron. Soc. Aust. 21, 302 (2004).

    ADS  Article  Google Scholar 

  20. R. T. Edwards, G. B. Hobbs, and R. N. Manchester, Mon. Not. R. Astron. Soc. 372, 1549 (2006).

    ADS  Article  Google Scholar 

  21. G. B. Hobbs, R. T. Edwards, and R. N. Manchester, Mon. Not. R. Astron. Soc. 369, 655 (2006).

    ADS  Article  Google Scholar 

  22. J. G. Lu, Y. J. Du, L. F. Hao, Z. Yan, Z. Y. Liu, K. J. Lee, G. J. Qiao, L. H. Shang, M. Wang, R. X. Xu, Y. L. Yue, and Q. J. Zhi, Astrophys. J. 816, 76 (2016), arXiv: 1511.08298.

    ADS  Article  Google Scholar 

  23. A. G. Lyne, and R. N. Manchester, Mon. Not. R. Astron. Soc. 234, 477 (1988).

    ADS  Article  Google Scholar 

  24. W. Sieber, and L. Oster, Astron. Astrophys. 38, 325 (1975).

    ADS  Google Scholar 

  25. A. G. J. van Leeuwen, M. L. A. Kouwenhoven, R. Ramachandran, J. M. Rankin, and B. W. Stappers, Astron. Astrophys. 387, 169 (2002).

    ADS  Article  Google Scholar 

  26. M. Serylak, B. Stappers, and P. Weltevrede, Am. Inst. Phys. Conf. Ser. 1357, 131 (2011).

    ADS  Google Scholar 

  27. A. A. Deshpande, and J. M. Rankin, Mon. Not. R. Astron. Soc. 322, 438 (2001).

    ADS  Article  Google Scholar 

  28. R. Basu, D. Mitra, G. I. Melikidze, and A. Skrzypczak, Mon. Not. R. Astron. Soc. 482, 3757 (2019), arXiv: 1810.08423.

    ADS  Article  Google Scholar 

  29. S. E. Thorsett, Astrophys. J. 377, 263 (1991).

    ADS  Article  Google Scholar 

  30. M. M. Komesaroff, D. Morris, and D. J. Cooke, Astrophys. Lett. 5, 37 (1970).

    ADS  Google Scholar 

  31. D. B. Melrose, J. Astrophys. Astron. 16, 137 (1995).

    ADS  Article  Google Scholar 

  32. D. Mitra, M. Arjunwadkar, and J. M. Rankin, Astrophys. J. 806, 236 (2015), arXiv: 1502.06897.

    ADS  Article  Google Scholar 

  33. K. S. Cheng, M. Ruderman, and L. Zhang, Astrophys. J. 537, 964 (2000).

    ADS  Article  Google Scholar 

  34. H. G. Wang, G. J. Qiao, R. X. Xu, and Y. Liu, Mon. Not. R. Astron. Soc. 366, 945 (2006).

    ADS  Article  Google Scholar 

  35. R. N. Manchester, Astrophys. J. 172, 43 (1972).

    ADS  Article  Google Scholar 

  36. K. J. Lee, X. H. Cui, H. G. Wang, G. J. Qiao, and R. X. Xu, Astrophys. J. 703, 507 (2009).

    ADS  Article  Google Scholar 

  37. R. Turolla, S. Zane, and J. J. Drake, Astrophys. J. 603, 265 (2004).

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to JiGuang Lu or Bo Peng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Peng, B., Xu, R. et al. The radiation structure of PSR B2016+28 observed with FAST. Sci. China Phys. Mech. Astron. 62, 959505 (2019). https://doi.org/10.1007/s11433-019-9394-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-9394-x

Keywords

  • radiation mechanisms
  • mathematical procedures and computer techniques
  • radio
  • pulsars