Skip to main content
Log in

Electronic structure evolution accompanying heavy fermion formation in CeCu2Si2

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The cooper pairs in the heavy-fermion superconductor CeCu2Si2 are formed of heavy fermions. Therefore, the heavy fermions are fundamental to the emergence of unconventional superconductivity and associated non-Fermi-liquid behavior in the normal state. The interplay between localization and itinerancy manifested on the electronic structure is key for understanding the heavyfermion behavior. Here, via the first-principle density functional theory (DFT) combined with single-site dynamical mean-field theory (DMFT), we investigate the temperature (T) evolution of the electronic structure of CeCu2Si2 in the normal state, focusing on the role of the 4f states in the low energy regime. Two characteristic temperature scales of this evolution, which accompanied the heavy-fermion formation, are established. The coherence onset temperature is around 130 K, whereas the heavy-fermion band formation temperature is between 40 and 80 K; both characteristic temperature scales are higher than the transport coherence temperature. Furthermore, the heavy-fermion formation is confirmed by calculating its effective mass variation with the temperature. Based on the calculated T-dependent evolution of the 4f orbital occupancy and electronic structure, an explanation on the behavior of the temperature evolution of the correlation strength of CeCu2Si2 is provided. Our results offer a comprehensive microscopic picture of the heavy-fermion formation in CeCu2Si2, which is essential for further understanding the emergent superconducting pairing mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schäfer, Phys. Rev. Lett. 43, 1892 (1979).

    ADS  Google Scholar 

  2. S. Kittaka, Y. Aoki, Y. Shimura, T. Sakakibara, S. Seiro, C. Geibel, F. Steglich, H. Ikeda, and K. Machida, Phys. Rev. Lett. 112, 067002 (2014).

    ADS  Google Scholar 

  3. H. Ikeda, M. T. Suzuki, and R. Arita, Phys. Rev. Lett. 114, 147003 (2015).

    ADS  Google Scholar 

  4. Y. Li, M. Liu, Z. Fu, X. Chen, F. Yang, and Y. F. Yang, Phys. Rev. Lett. 120, 217001 (2018).

    ADS  Google Scholar 

  5. G. Pang, M. Smidman, J. Zhang, L. Jiao, Z. Weng, E. M. Nica, Y. Chen, W. Jiang, Y. Zhang, W. Xie, H. S. Jeevan, H. Lee, P. Gegenwart, F. Steglich, Q. Si, and H. Yuan, Proc. Natl. Acad. Sci. 115, 5343 (2018).

    ADS  Google Scholar 

  6. K. Ueda, Y. Kitaoka, H. Yamada, Y. Kohori, T. Kohara, and K. Asayama, J. Phys. Soc. Jpn. 56, 867 (1987).

    ADS  Google Scholar 

  7. Y. Kitaoka, K. Ueda, K. Fujiwara, H. Arimoto, H. Iida, and K. Asayama, J. Phys. Soc. Jpn. 55, 723 (1986).

    ADS  Google Scholar 

  8. K. Ishida, Y. Kawasaki, K. Tabuchi, K. Kashima, Y. Kitaoka, K. Asayama, C. Geibel, and F. Steglich, Phys. Rev. Lett. 82, 5353 (1999).

    ADS  Google Scholar 

  9. K. Fujiwara, Y. Hata, K. Kobayashi, K. Miyoshi, J. Takeuchi, Y. Shimaoka, H. Kotegawa, T. C. Kobayashi, C. Geibel, and F. Steglich, J. Phys. Soc. Jpn. 77, 123711 (2008).

    ADS  Google Scholar 

  10. T. Takenaka, Y. Mizukami, J. A. Wilcox, M. Konczykowski, S. Seiro, C. Geibel, Y. Tokiwa, Y. Kasahara, C. Putzke, Y. Matsuda, A. Carrington, and T. Shibauchi, Phys. Rev. Lett. 119, 077001 (2017).

    ADS  Google Scholar 

  11. M. Enayat, Z. Sun, A. Maldonado, H. Suderow, S. Seiro, C. Geibel, S. Wirth, F. Steglich, and P. Wahl, Phys. Rev. B 93, 045123 (2016).

    ADS  Google Scholar 

  12. G. Zwicknagl, and U. Pulst, Physica B 186-188, 895 (1993).

    ADS  Google Scholar 

  13. O. Stockert, E. Faulhaber, G. Zwicknagl, N. Stüsser, H. S. Jeevan, M. Deppe, R. Borth, R. Küchler, M. Loewenhaupt, C. Geibel, and F. Steglich, Phys. Rev. Lett. 92, 136401 (2004).

    ADS  Google Scholar 

  14. I. Eremin, G. Zwicknagl, P. Thalmeier, and P. Fulde, Phys. Rev. Lett. 101, 187001 (2008).

    ADS  Google Scholar 

  15. C. M. Varma, Rev. Mod. Phys. 48, 219 (1976).

    ADS  Google Scholar 

  16. G. R. Stewart, Rev. Mod. Phys. 56, 755 (1984).

    ADS  Google Scholar 

  17. J. H. Shim, K. Haule, and G. Kotliar, Science 318, 1615 (2007).

    ADS  Google Scholar 

  18. Y. Yang, and D. Pines, Proc. Natl. Acad. Sci. 109, E3060 (2012).

    Google Scholar 

  19. Q. Y. Chen, D. F. Xu, X. H. Niu, J. Jiang, R. Peng, H. C. Xu, C. H. P. Wen, Z. F. Ding, K. Huang, L. Shu, Y. J. Zhang, H. Lee, V. N. Strocov, M. Shi, F. Bisti, T. Schmitt, Y. B. Huang, P. Dudin, X. C. Lai, S. Kirchner, H. Q. Yuan, and D. L. Feng, Phys. Rev. B 96, 045107 (2017).

    ADS  Google Scholar 

  20. P. Aynajian, E. H. da Silva Neto, A. Gyenis, R. E. Baumbach, J. D. Thompson, Z. Fisk, E. D. Bauer, and A. Yazdani, Nature 486, 201 (2012).

    ADS  Google Scholar 

  21. S. Jang, J. Denlinger, J. Allen, V. Zapf, M. Maple, J. N. Kim, B. G. Jang, and J. H. Shim, arXiv: 1704.08247.

  22. F. Reinert, D. Ehm, S. Schmidt, G. Nicolay, S. Hüfner, J. Kroha, O. Trovarelli, and C. Geibel, Phys. Rev. Lett. 87, 106401 (2001).

    ADS  Google Scholar 

  23. G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C. A. Marianetti, Rev. Mod. Phys. 78, 865 (2006).

    ADS  Google Scholar 

  24. S. Fujimori, Y. Takeda, T. Okane, Y. Saitoh, A. Fujimori, H. Yamagami, Y. Haga, E. Yamamoto, and Y. Ōnuki, J. Phys. Soc. Jpn. 85, 062001 (2016).

    ADS  Google Scholar 

  25. M. Smidman, O. Stockert, J. Arndt, G. M. Pang, L. Jiao, H. Q. Yuan, H. A. Vieyra, S. Kitagawa, K. Ishida, K. Fujiwara, T. C. Kobayashi, E. Schuberth, M. Tippmann, L. Steinke, S. Lausberg, A. Steppke, M. Brando, H. Pfau, U. Stockert, P. Sun, S. Friedemann, S. Wirth, C. Krellner, S. Kirchner, E. M. Nica, R. Yu, Q. Si, and F. Steglich, Philos. Mag. 98, 2930 (2018).

    ADS  Google Scholar 

  26. A. Georges, and G. Kotliar, Phys. Rev. B 45, 6479 (1992).

    ADS  Google Scholar 

  27. L. V. Pourovskii, P. Hansmann, M. Ferrero, and A. Georges, Phys. Rev. Lett. 112, 106407 (2014).

    ADS  Google Scholar 

  28. J. P. Rueff, J. M. Ablett, F. Strigari, M. Deppe, M. W. Haverkort, L. H. Tjeng, and A. Severing, Phys. Rev. B 91, 201108 (2015).

    ADS  Google Scholar 

  29. K. Haule, C. H. Yee, and K. Kim, Phys. Rev. B 81, 195107 (2010).

    ADS  Google Scholar 

  30. P. Blaha, K. Schwarz, G. K. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k: An Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties, edited by K. Schwarz (Technical Universitat, Wien, 2001).

  31. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  32. P. E. Blöchl, O. Jepsen, and O. K. Andersen, Phys. Rev. B 49, 16223 (1994).

    ADS  Google Scholar 

  33. B. Chakrabarti, M. E. Pezzoli, G. Sordi, K. Haule, and G. Kotliar, Phys. Rev. B 89, 125113 (2014).

    ADS  Google Scholar 

  34. E. A. Goremychkin, H. Park, R. Osborn, S. Rosenkranz, J. P. Castellan, V. R. Fanelli, A. D. Christianson, M. B. Stone, E. D. Bauer, K. J. McClellan, D. D. Byler, and J. M. Lawrence, Science 359, 186 (2018).

    ADS  Google Scholar 

  35. V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, J. Phys.-Condens. Matter 9, 767 (1997).

    ADS  Google Scholar 

  36. T. Pruschke, and N. Grewe, Z. Phys. B-Condens. Matter 74, 439 (1989).

    ADS  Google Scholar 

  37. Q. Yin, A. Kutepov, K. Haule, G. Kotliar, S. Y. Savrasov, and W. E. Pickett, Phys. Rev. B 84, 195111 (2011).

    ADS  Google Scholar 

  38. H. Yoon, J. H. Sim, and M. J. Han, Phys. Rev. B 98, 245101 (2018).

    ADS  Google Scholar 

  39. H. C. Choi, B. I. Min, J. H. Shim, K. Haule, and G. Kotliar, Phys. Rev. Lett. 108, 016402 (2012).

    ADS  Google Scholar 

  40. J. H. Shim, K. Haule, and G. Kotliar, Nature 446, 513 (2007).

    ADS  Google Scholar 

  41. W. H. Brito, and G. Kotliar, Phys. Rev. B 99, 125113 (2019).

    ADS  Google Scholar 

  42. W. H. Brito, S. Choi, Y. X. Yao, and G. Kotliar, Phys. Rev. B 98, 035143 (2018).

    ADS  Google Scholar 

  43. J. X. Zhu, P. H. Tobash, E. D. Bauer, F. Ronning, B. L. Scott, K. Haule, G. Kotliar, R. C. Albers, and J. M. Wills, Eurphys. Lett 97, 57001 (2012).

    ADS  Google Scholar 

  44. T. Jarlborg, H. F. Braun, and M. Peter, Z. Phys. B-Condens. Matter 52, 295 (1983).

    ADS  Google Scholar 

  45. G. Seyfarth, A. S. Rüetschi, K. Sengupta, A. Georges, D. Jaccard, S. Watanabe, and K. Miyake, Phys. Rev. B 85, 205105 (2012).

    ADS  Google Scholar 

  46. F. Steglich, J. Phys.-Conf. Ser. 400, 022111 (2012).

    Google Scholar 

  47. J. P. Rueff, S. Raymond, M. Taguchi, M. Sikora, J. P. Itié, F. Baudelet, D. Braithwaite, G. Knebel, and D. Jaccard, Phys. Rev. Lett. 106, 186405 (2011).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XueBing Luo or XieGang Zhu.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 11774320), and the Dean Foundation of China Academy of Engineering Physics (Grant No. 201501040). We gratefully acknowledge helpful discussions with Prof. Yu Liu, Prof. HaiFeng Song, and Dr. YuanJi Xu.

Supporting Information

The supporting information is available online at phys.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Zhang, Y., Chen, Q. et al. Electronic structure evolution accompanying heavy fermion formation in CeCu2Si2. Sci. China Phys. Mech. Astron. 63, 287413 (2020). https://doi.org/10.1007/s11433-019-1554-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1554-7

Keywords

Navigation