Skip to main content
Log in

Magnetically tunable atom-exchange process involving ultracold weakly bound Feshbach molecules

  • Invited Review
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Chemical reactions at ultracold temperatures have attracted great interest in recent years. The atom-exchange reaction between an atom and a weakly bound Feshbach molecule near overlapping Feshbach resonances presents a simple and ideal example of the controlled ultracold chemistry. The energy released in the reaction can be tuned to be very small and thus the reaction products can be trapped and detected, allowing the study of state-to-state reaction dynamics. The reaction can be tuned from the exothermic regime to the endothermic regime, which allows to study the threshold behavior of an endothermic reaction. In this paper, we review the recent progress in studying the atom-exchange reaction involving Feshbach molecules in ultracold atomic gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. V. Krems, Phys. Chem. Chem. Phys. 10, 4079 (2008).

    Article  Google Scholar 

  2. L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, New J. Phys. 11, 1367 (2009).

    Google Scholar 

  3. M. T. Bell, and T. P. Softley, Mol. Phys. 107, 99 (2009).

    Article  ADS  Google Scholar 

  4. W. C. Stwalley, Can. J. Chem. 82, 709 (2004).

    Article  Google Scholar 

  5. G. Quemener, and P. S. Julienne, Chem. Rev. 112, 4949 (2012).

    Article  Google Scholar 

  6. N. Balakrishnan, J. Chem. Phys. 145, 150901 (2016).

    Article  ADS  Google Scholar 

  7. S. Ospelkaus, K. K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Quemener, P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye, Science 327, 853 (2010).

    Article  ADS  Google Scholar 

  8. K. K. Ni, S. Ospelkaus, D. Wang, G. Quéméner, B. Neyenhuis, M. H. G. de Miranda, J. L. Bohn, J. Ye, and D. S. Jin, Nature 464, 1324 (2010).

    Article  ADS  Google Scholar 

  9. N. Zahzam, T. Vogt, M. Mudrich, D. Comparat, and P. Pillet, Phys. Rev. Lett. 96, 023202 (2006).

    Article  ADS  Google Scholar 

  10. P. Staanum, S. D. Kraft, J. Lange, R. Wester, and M. Weidemüller, Phys. Rev. Lett. 96, 023201 (2006).

    Article  ADS  Google Scholar 

  11. E. R. Hudson, N. B. Gilfoy, S. Kotochigova, J. M. Sage, and D. DeMille, Phys. Rev. Lett. 100, 203201 (2008).

    Article  ADS  Google Scholar 

  12. H. Yang, D. C. Zhang, L. Liu, Y. X. Liu, J. Nan, B. Zhao, and J. W. Pan, Science 363, 261 (2019).

    Article  ADS  Google Scholar 

  13. C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010).

    Article  ADS  Google Scholar 

  14. T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, C. Chin, B. Engeser, A. D. Lange, K. Pilch, A. Jaakkola, H. C. Nägerl, and R. Grimm, Nature 440, 315 (2006).

    Article  ADS  Google Scholar 

  15. E. Braaten, and H. W. Hammer, Phys. Rep. 428, 259 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  16. Y. Wang, J. Wang, J. P. DIncao, and C. H. Greene, Phys. Rev. Lett. 109, 243201 (2012).

    Article  ADS  Google Scholar 

  17. R. Pires, J. Ulmanis, S. Hafner, M. Repp, A. Arias, E. D. Kuhnle, and M. Weidemüller, Phys. Rev. Lett. 112, 250404 (2014).

    Article  ADS  Google Scholar 

  18. S. K. Tung, K. Jiménez-García, J. Johansen, C. V. Parker, and C. Chin, Phys. Rev. Lett. 113, 240402 (2014).

    Article  ADS  Google Scholar 

  19. J. J. Zirbel, K. K. Ni, S. Ospelkaus, J. P. DIncao, C. E. Wieman, J. Ye, and D. S. Jin, Phys. Rev. Lett. 100, 143201 (2008).

    Article  ADS  Google Scholar 

  20. T. Wang, J. Chen, T. Yang, C. Xiao, Z. Sun, L. Huang, D. Dai, X. Yang, and D. H. Zhang, Science 342, 1499 (2013).

    Article  ADS  Google Scholar 

  21. B. Drews, M. Deiß, K. Jachymski, Z. Idziaszek, and J. Hecker Denschlag, Nat. Commun. 8, 14854 (2017).

    Article  ADS  Google Scholar 

  22. S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, C. Chin, J. H. Denschlag, and R. Grimm, Phys. Rev. Lett. 91, 240402 (2003).

    Article  ADS  Google Scholar 

  23. D. E. McCoy, T. Feo, T. A. Harvey, and R. O. Prum, Nat. Commun. 9, 1 (2018).

    Article  ADS  Google Scholar 

  24. S. Knoop, F. Ferlaino, M. Mark, M. Berninger, H. Schöbel, H. C. Nägerl, and R. Grimm, Nat. Phys. 5, 227 (2009).

    Article  Google Scholar 

  25. T. Lompe, T. B. Ottenstein, F. Serwane, K. Viering, A. N. Wenz, G. Zürn, and S. Jochim, Phys. Rev. Lett. 105, 103201 (2010).

    Article  ADS  Google Scholar 

  26. C. Berteloite, M. Lara, A. Bergeat, S. D. Le Picard, F. Dayou, K. M. Hickson, A. Canosa, C. Naulin, J. M. Launay, I. R. Sims, and M. Costes, Phys. Rev. Lett. 105, 203201 (2010).

    Article  ADS  Google Scholar 

  27. R. S. Bloom, M. G. Hu, T. D. Cumby, and D. S. Jin, Phys. Rev. Lett. 111, 105301 (2013).

    Article  ADS  Google Scholar 

  28. C. Chin, T. Kraemer, M. Mark, J. Herbig, P. Waldburger, H. C. Nagerl, and R. Grimm, Phys. Rev. Lett. 94, 123201 (2005).

    Article  ADS  Google Scholar 

  29. W. C. Stwalley, Contemp. Phys. 19, 65 (1978).

    Article  ADS  Google Scholar 

  30. M. Theis, G. Thalhammer, K. Winkler, M. Hellwig, G. Ruff, R. Grimm, and J. H. Denschlag, Phys. Rev. Lett. 93, 123001 (2004).

    Article  ADS  Google Scholar 

  31. C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, Nature 424, 47 (2003).

    Article  ADS  Google Scholar 

  32. T. Köhler, K. Góral, and P. S. Julienne, Rev. Mod. Phys. 78, 1311 (2006).

    Article  ADS  Google Scholar 

  33. S. T. Thompson, E. Hodby, and C. E. Wieman, Phys. Rev. Lett. 95, 190404 (2005).

    Article  ADS  Google Scholar 

  34. C. Klempt, T. Henninger, O. Topic, M. Scherer, L. Kattner, E. Tiemann, W. Ertmer, and J. J. Arlt, Phys. Rev. A 78, 061602 (2008).

    Article  ADS  Google Scholar 

  35. C. H. Wu, J. W. Park, P. Ahmadi, S. Will, and M. W. Zwierlein, Phys. Rev. Lett. 109, 085301 (2012).

    Article  ADS  Google Scholar 

  36. Z. Fu, L. Huang, Z. Meng, P. Wang, L. Zhang, S. Zhang, H. Zhai, P. Zhang, and J. Zhang, Nat. Phys. 10, 110 (2014).

    Article  Google Scholar 

  37. Y. X. Liu, J. Nan, D. C. Zhang, L. Liu, H. Yang, J. Rui, B. Zhao, and J. W. Pan, Phys. Rev. A 100, 032706 (2019).

    Article  ADS  Google Scholar 

  38. C. Marzok, B. Deh, C. Zimmermann, P. W. Courteille, E. Tiemann, Y. V. Vanne, and A. Saenz, Phys. Rev. A 79, 012717 (2009).

    Article  ADS  Google Scholar 

  39. M. Lysebo, and L. Veseth, Phys. Rev. A 81, 032702 (2010).

    Article  ADS  Google Scholar 

  40. T. Schuster, R. Scelle, A. Trautmann, S. Knoop, M. K. Oberthaler, M. M. Haverhals, M. R. Goosen, S. J. J. M. F. Kokkelmans, and E. Tiemann, Phys. Rev. A 85, 042721 (2012).

    Article  ADS  Google Scholar 

  41. M. J. Zhu, H. Yang, L. Liu, D. C. Zhang, Y. X. Liu, J. Nan, J. Rui, B. Zhao, J. W. Pan, and E. Tiemann, Phys. Rev. A 96, 062705 (2017).

    Article  ADS  Google Scholar 

  42. J. Ulmanis, S. Häfner, R. Pires, E. D. Kuhnle, M. Weidemüller, and E. Tiemann, New J. Phys. 17, 055009 (2015).

    Article  ADS  Google Scholar 

  43. M. Bartenstein, A. Altmeyer, S. Riedl, R. Geursen, S. Jochim, C. Chin, J. H. Denschlag, R. Grimm, A. Simoni, E. Tiesinga, C. J. Williams, and P. S. Julienne, Phys. Rev. Lett. 94, 103201 (2005).

    Article  ADS  Google Scholar 

  44. A. D. Lange, K. Pilch, A. Prantner, F. Ferlaino, B. Engeser, H. C. Nägerl, R. Grimm, and C. Chin, Phys. Rev. A 79, 013622 (2009).

    Article  ADS  Google Scholar 

  45. J. P. DIncao, and B. D. Esry, Phys. Rev. Lett. 103, 083202 (2009).

    Article  ADS  Google Scholar 

  46. S. Knoop, F. Ferlaino, M. Berninger, M. Mark, H. C. Nagerl, R. Grimm, J. P. D’Incao, and B. D. Esry, Phys. Rev. Lett. 104, 053201 (2010).

    Article  ADS  Google Scholar 

  47. R. Krems, Physics 3, 10 (2010).

    Article  Google Scholar 

  48. J. Rui, H. Yang, L. Liu, D. C. Zhang, Y. X. Liu, J. Nan, Y. A. Chen, B. Zhao, and J. W. Pan, Nat. Phys. 13, 699 (2017).

    Article  Google Scholar 

  49. J. Bauer, C. Salomon, and E. Demler, Phys. Rev. Lett. 111, 215304 (2013).

    Article  ADS  Google Scholar 

  50. Y. Nishida, Phys. Rev. Lett. 111, 135301 (2013).

    Article  ADS  Google Scholar 

  51. J. P. DIncao, and B. D. Esry, Phys. Rev. Lett. 94, 213201 (2005).

    Article  ADS  Google Scholar 

  52. J. P. DIncao, and B. D. Esry, Phys. Rev. A 73, 030702 (2006).

    Article  ADS  Google Scholar 

  53. E. Braaten, H. W. Hammer, D. Kang, and L. Platter, Phys. Rev. A 81, 013605 (2010).

    Article  ADS  Google Scholar 

  54. K. Helfrich, H. W. Hammer, and D. S. Petrov, Phys. Rev. A 81, 042715 (2010).

    Article  ADS  Google Scholar 

  55. H. W. Hammer, D. Kang, and L. Platter, Phys. Rev. A 82, 022715 (2010).

    Article  ADS  Google Scholar 

  56. T. B. Ottenstein, T. Lompe, M. Kohnen, A. N. Wenz, and S. Jochim, Phys. Rev. Lett. 101, 203202 (2008).

    Article  ADS  Google Scholar 

  57. J. R. Williams, E. L. Hazlett, J. H. Huckans, R. W. Stites, Y. Zhang, and K. M. OHara, Phys. Rev. Lett. 103, 130404 (2009).

    Article  ADS  Google Scholar 

  58. P. Naidon, and M. Ueda, Phys. Rev. Lett. 103, 073203 (2009).

    Article  ADS  Google Scholar 

  59. J. L. Li, and S. L. Cong, Phys. Rev. A 99, 022708 (2019).

    Article  ADS  Google Scholar 

  60. J. Wang, J. P. DIncao, B. D. Esry, and C. H. Greene, Phys. Rev. Lett. 108, 263001 (2012).

    Article  ADS  Google Scholar 

  61. J. Wolf, M. Deiß, A. Krükow, E. Tiemann, B. P. Ruzic, Y. Wang, J. P. DIncao, P. S. Julienne, and J. H. Denschlag, Science 358, 921 (2017).

    Article  ADS  Google Scholar 

  62. M.-G. Hu, Y. Liu, D. D. Grimes, Y.-W. Lin, A. H. Gheorghe, R. Vexiau, N. Boulufa-Maafa, O. Dulieu, and K. K. Ni, arXiv: 1907.13628v1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhao.

Additional information

This work was supported by the National Key R&D Program of China (Grant No. 2018YFA0306502), the National Natural Science Foundation of China (Grant No. 11521063), the Chinese Academy of Sciences, and the Anhui Initiative in Quantum Information Technologies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nan, J., Zhao, B. Magnetically tunable atom-exchange process involving ultracold weakly bound Feshbach molecules. Sci. China Phys. Mech. Astron. 63, 253001 (2020). https://doi.org/10.1007/s11433-019-1476-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1476-1

Keywords

Navigation