Skip to main content
Log in

Hyperbolic metamaterial using chiral molecules

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We theoretically investigate the intra-band transitions in Mobius molecules. Due to the weak magnetic response, the relative permittivity is significantly modified by the presence of the medium while the relative permeability is not. We show that there is hyperbolic dispersion relation induced by the intra-band transitions because one of the eigen-values of permittivity possesses a different sign from the other two, while all three eigen-values of permeability are positive. We further demonstrate that the bandwidth of negative refraction is 0.165 eV for the H-polarized incident light, which is broader than the ones for inter-band transitions by 3 orders of magnitude. Moreover, the frequency domain has been shifted from ultra-violet to visible domain. Although there is negative refraction for the E-polarized incident light, the bandwidth is much narrower and depends on the incident angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).

    ADS  Google Scholar 

  2. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).

    ADS  Google Scholar 

  3. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).

    ADS  Google Scholar 

  4. K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, S. Savel'ev, and F. Nori, Rev. Mod. Phys. 80, 1201 (2008).

    ADS  Google Scholar 

  5. A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y S. Kivshar, Laser Photon. Rev. 9, 195 (2015).

    ADS  Google Scholar 

  6. Y. N. Fang, Y Shen, Q. Ai, and C. P. Sun, Phys. Rev. A 94, 043805 (2016).

    ADS  Google Scholar 

  7. R. Zhao, Y. Luo, and J. B. Pendry, Sci. Bull. 61, 59 (2016).

    Google Scholar 

  8. M. Khorasaninejad, and F. Capasso, Science 358, eaam8100 (2017).

    Google Scholar 

  9. Q. Ai, P.-B. Li, W. Qin, C. P. Sun, and F. Nori, arXiv: 1802.01280.

  10. D. Felbacq, and E. Rousseau, Ann. Phys. 529, 1600371 (2017).

    Google Scholar 

  11. H. Jia, W. Gao, Y. Xiang, H. Liu, and S. Zhang, Ann. Phys. 530, 1800118 (2018).

    Google Scholar 

  12. J. J. Cheng, Y. Q. Chu, T. Liu, J. X. Zhao, F. G. Deng, Q. Ai, and F. Nori, J. Phys. Commun. 3, 015010 (2019).

    Google Scholar 

  13. U. Leonhardt, Science 312, 1777 (2006).

    ADS  MathSciNet  Google Scholar 

  14. J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).

    ADS  MathSciNet  Google Scholar 

  15. Y. Shen, and Q. Ai, Sci. Rep. 6, 20336 (2016).

    ADS  Google Scholar 

  16. S. C. Zhao, Sci. China-Phys. Mech. Astron. 55, 213 (2012).

    ADS  Google Scholar 

  17. Y. Shen, H. Y. Ko, Q. Ai, S. M. Peng, and B. Y. Jin, J. Phys. Chem. C 118, 3766 (2014).

    Google Scholar 

  18. Y. Shen, and Y. Z. Chen, Sci. China-Phys. Mech. Astron. 60, 070312 (2017).

    Google Scholar 

  19. R. K. Fisher, and R. W. Gould, Phys. Rev. Lett. 22, 1093 (1969).

    ADS  Google Scholar 

  20. D. R. Smith, and D. Schurig, Phys. Rev. Lett. 90, 077405 (2003).

    ADS  Google Scholar 

  21. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, Nat. Photon. 7, 948 (2013).

    ADS  Google Scholar 

  22. S. Jahani, and Z. Jacob, Nat. Nanotech. 11, 23 (2016).

    ADS  Google Scholar 

  23. S. Guan, S. Y. Huang, Y. Yao, and S. A. Yang, Phys. Rev. B 95, 165436 (2017).

    ADS  Google Scholar 

  24. K. V. Sreekanth, A. De Luca, and G. Strangi, Appl. Phys. Lett. 103, 023107 (2013).

    ADS  Google Scholar 

  25. E. Heilbronner, Tetrahedron Lett. 5, 1923 (1964).

    Google Scholar 

  26. D. M. Walba, T. C. Homan, R. M. Richards, and R. C. Haltiwanger, New J. Chem. 17, 661 (1993).

    Google Scholar 

  27. T. Yoneda, Y. M. Sung, J. M. Lim, D. Kim, and A. Osuka, Angew. Chem. Int. Ed. 53, 13169 (2014).

    Google Scholar 

  28. D. Ajami, O. Oeckler, A. Simon, and R. Herges, Nature 426, 819 (2003).

    ADS  Google Scholar 

  29. C. W. Chang, M. Liu, S. Nam, S. Zhang, Y. Liu, G. Bartal, and X. Zhang, Phys. Rev. Lett. 105, 235501 (2010).

    ADS  Google Scholar 

  30. A. K. Poddar, and U. L. Rohde, Microwave J. 57, 76 (2014).

    Google Scholar 

  31. V. Balzani, A. Credi, and M. Venturi, Molecular Devices and Machines. Concepts and Perspectives for the Nanoworld (VCH-Wiley, Weinheim, 2008).

    Google Scholar 

  32. A. Yamashiro, Y. Shimoi, K. Harigaya, and K. Wakabayashi, Physica E 22, 688 (2004).

    ADS  Google Scholar 

  33. N. Zhao, H. Dong, S. Yang, and C. P. Sun, Phys. Rev. B 79, 125440 (2009).

    ADS  Google Scholar 

  34. J. M. Pond, IEEE Trans. Microw. Theor. Tech. 48, 2465 (2000).

    ADS  Google Scholar 

  35. Z. L. Guo, Z. R. Gong, H. Dong, and C. P. Sun, Phys. Rev. B 80, 195310 (2009).

    ADS  Google Scholar 

  36. O. Lukin, and F. Vogtle, Angew. Chem. Int. Ed. 44, 1456 (2005).

    Google Scholar 

  37. L. Xu, Z. R. Gong, M. J. Tao, and Q. Ai, Phys. Rev. E 97, 042124 (2018).

    ADS  MathSciNet  Google Scholar 

  38. N. Lambert, Y. N. Chen, Y. C. Cheng, C. M. Li, G. Y. Chen, and F. Nori, Nat. Phys. 9, 10 (2013).

    Google Scholar 

  39. J. D. Jackson, Classical Electrodynamics, 2nd ed. (John Wiley, New York, 1975), p. 125.

    MATH  Google Scholar 

  40. R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II Nonequlibirum Statistical Mechanics (Springer-Verlag, Berlin, Heidelberg, 1985), pp. 109–117.

    Google Scholar 

  41. H. H. Greenwood, Computing Methods in Quantum Organic Chemistry (Wiley-InterScience, New York, 1972), p. 106.

    Google Scholar 

  42. R. J. Silbey, R. A. Alberty, and M. G. Bawendi, Physical Chemistry, 4th ed. (John Wiley&Sons, Hoboken, 2004), p. 819.

    Google Scholar 

  43. S. Tokuji, J. Y. Shin, K. S. Kim, J. M. Lim, K. Youfu, S. Saito, D. Kim, and A. Osuka, J. Am. Chem. Soc. 131, 7240 (2009).

    Google Scholar 

  44. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, Phys. Rev. Lett. 95, 223902 (2005).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Ai.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11505007, 11674033, and 11474026).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Cheng, J., Chu, Y. et al. Hyperbolic metamaterial using chiral molecules. Sci. China Phys. Mech. Astron. 63, 260311 (2020). https://doi.org/10.1007/s11433-019-1470-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1470-6

keywords

Navigation