Skip to main content
Log in

Quantumness protection for open systems in a double-layer environment

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We study the dynamics of two-level atomic systems (qubits) subject to a double-layer environment that consists of a network of single-mode cavities coupled to a common reservoir. A general exact master equation for the dynamics of a qubit system can be obtained by the quantum-state-diffusion (QSD) approach, which is extended to our spin-cavity-boson model. The quantumness of the atoms comprising coherence and entanglement is investigated for various configurations of the double-layer environment. The findings indicate that parametric control is available for the preservation and generation of system-quantumness by regulating the cavity network. Moreover the underlying physics is profoundly revealed by an effective model obtained by a unitary transformation. Therefore, our work provides an interesting proposal to protect the quantumness of open systems in the framework of a double-layer environment containing bosonic modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. W. Gardiner, and P. Zoller, Quantum Noise (Springer, Berlin, 2004), p. 39.

    MATH  Google Scholar 

  2. M. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000), p. 278.

    MATH  Google Scholar 

  3. P. W. Shor, Phys. Rev. A 52, R2493 (1995).

    Article  ADS  Google Scholar 

  4. A. M. Steane, Phys. Rev. Lett. 77, 793 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  5. L. Viola, E. Knill, and S. Lloyd, Phys. Rev. Lett. 82, 2417 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  6. G. de Lange, Z. H. Wang, D. Riste, V. V. Dobrovitski, and R. Hanson, Science 330, 60 (2010), arXiv: 1008.2119.

    Article  ADS  Google Scholar 

  7. P. Facchi, D. A. Lidar, and S. Pascazio, Phys. Rev. A 69, 032314 (2004).

    Article  ADS  Google Scholar 

  8. S. Maniscalco, F. Francica, R. L. Zaffino, N. Lo Gullo, and F. Plastina, Phys. Rev. Lett. 100, 090503 (2008), arXiv: 0710.3914.

    Article  ADS  MathSciNet  Google Scholar 

  9. Z. X. Man, N. B. An, and Y. J. Xia, Phys. Rev. A 90, 062104 (2014).

    Article  ADS  Google Scholar 

  10. E. M. Laine, H. P. Breuer, J. Piilo, C. F. Li, and G. C. Guo, Phys. Rev. Lett. 108, 210402 (2012).

    Article  ADS  Google Scholar 

  11. R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007).

    Article  ADS  Google Scholar 

  12. J. J. Pla, K. Y. Tan, J. P. Dehollain, W. H. Lim, J. J. L. Morton, D. N. Jamieson, A. S. Dzurak, and A. Morello, Nature 489, 541 (2012), arXiv: 1305.4481.

    Article  ADS  Google Scholar 

  13. A. M. Tyryshkin, S. Tojo, J. J. L. Morton, H. Riemann, N. V. Abrosimov, P. Becker, H. J. Pohl, T. Schenkel, M. L. W. Thewalt, K. M. Itoh, and S. A. Lyon, Nat. Mater. 11, 143 (2012), arXiv: 1105.3772.

    Article  ADS  Google Scholar 

  14. R. Hanson, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom, Science 320, 352 (2008).

    Article  ADS  Google Scholar 

  15. H. J. Kimble, Nature 453, 1023 (2008), arXiv: 0806.4195.

    Article  ADS  Google Scholar 

  16. T. Ma, Y. Chen, T. Chen, S. R. Hedemann, and T. Yu, Phys. Rev. A 90, 042108 (2014), arXiv: 1404.5280.

    Article  ADS  Google Scholar 

  17. Z. X. Man, N. B. An, and Y. J. Xia, Opt. Express 23, 5763 (2015).

    Article  ADS  Google Scholar 

  18. K. Xu, Y. J. Zhang, Y. J. Xia, Z. D. Wang, and H. Fan, Phys. Rev. A 98, 022114 (2018), arXiv: 1802.01278.

    Article  ADS  Google Scholar 

  19. Y. Chen, W. Shi, D. Zeng, and T. Yu, arXiv: 1803.11294.

  20. Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Rev. Mod. Phys. 85, 623 (2013), arXiv: 1204.2137.

    Article  ADS  Google Scholar 

  21. N. Gisin, and I. C. Percival, J. Phys. A-Math. Gen. 25, 5677 (1992).

    Article  ADS  Google Scholar 

  22. N. Gisin, and I. C. Percival, J. Phys. A-Math. Gen. 26, 2233 (1993).

    Article  ADS  Google Scholar 

  23. T. Baumgratz, M. Cramer, and M. B. Plenio, Phys. Rev. Lett. 113, 140401 (2014), arXiv: 1311.0275.

    Article  ADS  Google Scholar 

  24. L. H. Shao, Z. Xi, H. Fan, and Y. Li, Phys. Rev. A 91, 042120 (2015), arXiv: 1410.8327.

    Article  ADS  Google Scholar 

  25. C. Radhakrishnan, M. Parthasarathy, S. Jambulingam, and T. Byrnes, Phys. Rev. Lett. 116, 150504 (2016).

    Article  ADS  Google Scholar 

  26. G. Rigolin, Phys. Rev. A 71, 032303 (2005).

    Article  ADS  Google Scholar 

  27. W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).

    Article  ADS  Google Scholar 

  28. J. Jing, Z. G. Lü, and G. H. Yang, Phys. Rev. A 76, 032322 (2007), arXiv: 0705.3276.

    Article  ADS  Google Scholar 

  29. B. M. Garraway, Phys. Rev. A 55, 2290 (1997).

    Article  ADS  Google Scholar 

  30. L. Mazzola, S. Maniscalco, J. Piilo, K. A. Suominen, and B. M. Garraway, Phys. Rev. A 80, 012104 (2009), arXiv: 0810.1361.

    Article  ADS  Google Scholar 

  31. X. Zhao, J. Jing, B. Corn, and T. Yu, Phys. Rev. A 84, 032101 (2011), arXiv: 1109.1239.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Jing.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11575071, 11974311, and U1801661), Zhejiang Provincial Natural Science Foundation of China (Grant No. LD18A040001), and the Fundamental Research Funds for the Central Universities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Y., Zhang, J., Chen, Y. et al. Quantumness protection for open systems in a double-layer environment. Sci. China Phys. Mech. Astron. 63, 250312 (2020). https://doi.org/10.1007/s11433-019-1459-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1459-2

Keywords

Navigation