Skip to main content
Log in

Non-premixed turbulent combustion modeling based on the filtered turbulent flamelet equation

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In turbulent combustion simulations, the flow structure at the unresolved scale level needs to be reasonably modeled. Following the idea of turbulent flamelet equation for the non-premixed flame case, which was derived based on the filtered governing equations (L. Wang, Combust. Flame 175, 259 (2017)), the scalar dissipation term for tabulation can be directly computed from the resolved flowing quantities, instead of solving species transport equations. Therefore, the challenging source term closure for the scalar dissipation or any assumed probability density functions can be avoided; meanwhile the chemical sources are closed by scaling relations. The general principles are discussed in the context of large eddy simulation with case validation. The new model predictions of the bluff-body flame show sufficiently improved results, compared with these from the classic progress-variable approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Peters, Turbulent Combustion (Cambridge University Press, Cambridge, 2000), p. 212.

    Book  MATH  Google Scholar 

  2. C. D. Pierce, and P. Moin, J. Fluid Mech. 504, 73 (1999).

    Article  ADS  Google Scholar 

  3. A. Y. Klimenko, and R. W. Bilger, Prog. Energy Combust. Sci. 25, 595 (1999).

    Article  Google Scholar 

  4. S. B. Pope, Prog. Energy Combust. Sci. 11, 119 (1985).

    Article  ADS  Google Scholar 

  5. V. Eswaran, and S. B. Pope, Phys. Fluids 31, 506 (1988).

    Article  ADS  Google Scholar 

  6. G. Balarac, H. Pitsch, and V. Raman, Phys. Fluids 20, 035114 (2008).

    Article  ADS  Google Scholar 

  7. G. Balarac, H. Pitsch, and V. Raman, Phys. Fluids 20, 091701 (2008).

    Article  ADS  Google Scholar 

  8. A. W. Cook, and J. J. Riley, Phys. Fluids 6, 2868 (1994).

    Article  ADS  Google Scholar 

  9. C. M. Kaul, V. Raman, G. Balarac, and H. Pitsch, Phys. Fluids 21, 055102 (2009).

    Article  ADS  Google Scholar 

  10. C. M. Kaul, and V. Raman, Phys. Fluids 23, 035102 (2011).

    Article  ADS  Google Scholar 

  11. C. D. Pierce, and P. Moin, Phys. Fluids 10, 3041 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  12. S. S. Girimaji, and Y. Zhou, Phys. Fluids 8, 1224 (1996).

    Article  ADS  Google Scholar 

  13. D. Veynante, and R. Knikker, J. Turbul. 7, N35 (2006).

    Article  ADS  Google Scholar 

  14. A. W. Cook, J. J. Riley, and G. Kosaly, Combust. Flame 109, 332 (1997).

    Article  Google Scholar 

  15. M. Ihme, and Y. C. See, Combust. Flame 157, 1850 (2010).

    Article  Google Scholar 

  16. M. Ihme, J. Zhang, G. He, and B. Dally, Flow Turbul. Combust 89, 449 (2012).

    Article  Google Scholar 

  17. M. Ihme, and H. Pitsch, Combust. Flame 155, 90 (2008).

    Article  Google Scholar 

  18. Y. Chen, and M. Ihme, Combust. Flame 160, 2896 (2013).

    Article  Google Scholar 

  19. Y. C. See, and M. Ihme, Proc. Combust. Instit. 35, 1225 (2015).

    Article  Google Scholar 

  20. L. Wang, Combust. Flame 175, 259 (2017).

    Article  Google Scholar 

  21. A. G. Class, B. J. Matkowsky, and A. Y. Klimenko, J. Fluid Mech. 491, 11 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  22. B. B. Dally, A. R. Masri, R. S. Barlow, and G. J. Fiechtner, Combust. Flame 114, 119 (1998).

    Article  Google Scholar 

  23. A. Kempf, R. P. Lindstedt, and J. Janicka, Combust. Flame 144, 170 (2006).

    Article  Google Scholar 

  24. T. Yang, and J. Zhang, in Proceedings of the ASME Power conference Joint with ICOPE-17 (ASME, Charlotte, 2017).

    Google Scholar 

  25. W. P. Jones, and R. P. Lindstedt, Combust. Flame 73, 233 (1988).

    Article  Google Scholar 

  26. L. Wang, Z. Liu, S. Chen, and C. Zheng, Combust. Sci. Tech. 184, 259 (2012).

    Article  Google Scholar 

  27. J. P. Kim, U. Schnell, and G. Scheffknecht, Combust. Sci. Tech. 180, 565 (2008).

    Article  Google Scholar 

  28. Y. Guo, Filtered Turbulent Flamelet Model for Turbulent Combustion Simulation, Dissertation for Master’s Degree (Shanghai Jiao Tong University, Shanghai, 2019), pp. 25–34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiPo Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, L. & Guo, Y. Non-premixed turbulent combustion modeling based on the filtered turbulent flamelet equation. Sci. China Phys. Mech. Astron. 63, 244711 (2020). https://doi.org/10.1007/s11433-019-1458-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1458-4

Keywords

Navigation