Skip to main content
Log in

A Bayesian validation approach to practical boson sampling

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Boson sampling is a promising candidate for demonstrating quantum supremacy. The validation that involves judging whether a quantum setup outputs photons following the boson sampling model is an essential task in the experiments. However, the current validation methods may result in an incorrect conclusion being reached in realistic experiments, in which no ideally identical photons exist. Accordingly, this study proposes a slope-based approach, which is an extended Bayesian validation, to model the degree of photon indistinguishability. Through numerical simulations and performance evaluations, we demonstrate that the proposed approach can correctly validate boson sampling against the distribution of classical particles. In addition to offering a useful approach for validation, our research indicates that physicists should pay more attention to the quality of photon indistinguishability in boson sampling experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Aaronson, and A. Arkhipov, in The Computational Complexity of Linear Optics: STOC’11 Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing, San Jose, California, USA, June 06–08, 2011 (ACM, New York, 2011), pp. 333–342.

    MATH  Google Scholar 

  2. J. Preskill, arXiv: 1203.5813.

  3. M. A. Nielsen, and I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, New York, 2011).

    MATH  Google Scholar 

  4. T. Xin, S. Huang, S. Lu, K. Li, Z. Luo, Z. Yin, J. Li, D. Lu, G. Long, and B. Zeng, Sci. Bull. 63, 17 (2018).

    Article  Google Scholar 

  5. W. C. Peng, B. N. Wang, F. Hu, Y. J. Wang, X. J. Fang, X. Y. Chen, and C. Wang, Sci. China-Phys. Mech. Astron. 62, 060311 (2019).

    Article  Google Scholar 

  6. J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X. M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, Science 339, 798 (2013), arXiv: 1212.2622.

    Article  ADS  Google Scholar 

  7. M. A. Broome, A. Fedrizzi, S. Rahimi-Keshari, J. Dove, S. Aaronson, T. C. Ralph, and A. G. White, Science 339, 794 (2013), arXiv: 1212.2234.

    Article  ADS  Google Scholar 

  8. M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, Nat. Photon. 7, 540 (2013), arXiv: 1212.2240.

    Article  ADS  Google Scholar 

  9. A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvão, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, Nat. Photon. 7, 545 (2013), arXiv: 1212.2783.

    Article  ADS  Google Scholar 

  10. N. Spagnolo, C. Vitelli, M. Bentivegna, D. J. Brod, A. Crespi, F. Flamini, S. Giacomini, G. Milani, R. Ramponi, P. Mataloni, R. Osellame, E. F. Galvão, and F. Sciarrino, Nat. Photon. 8, 615 (2014), arXiv: 1311.1622.

    Article  ADS  Google Scholar 

  11. M. Bentivegna, N. Spagnolo, C. Vitelli, F. Flamini, N. Viggianiello, L. Latmiral, P. Mataloni, D. J. Brod, E. F. Galvão, A. Crespi, R. Ramponi, R. Osellame, and F. Sciarrino, Sci. Adv. 1, e1400255 (2015), arXiv: 1505.03708.

    Article  ADS  Google Scholar 

  12. H. Wang, W. Li, X. Jiang, Y. M. He, Y. H. Li, X. Ding, M. C. Chen, J. Qin, C. Z. Peng, C. Schneider, M. Kamp, W. J. Zhang, H. Li, L. X. You, Z. Wang, J. P. Dowling, S. Höfling, C. Y. Lu, and J. W. Pan, Phys. Rev. Lett. 120, 230502 (2018), arXiv: 1801.08282.

    Article  ADS  Google Scholar 

  13. H. S. Zhong, Y. Li, W. Li, L. C. Peng, Z. E. Su, Y. Hu, Y. M. He, X. Ding, W. Zhang, H. Li, L. Zhang, Z. Wang, L. You, X. L. Wang, X. Jiang, L. Li, Y. A. Chen, N. L. Liu, C. Y. Lu, and J. W. Pan, Phys. Rev. Lett. 121, 250505 (2018), arXiv: 1810.04823.

    Article  ADS  Google Scholar 

  14. L. G. Valiant, Theor. Comput. Sci. 8, 189 (1979).

    Article  Google Scholar 

  15. S. Scheel, and S. Y. Buhmann, Acta Phys. Slovaca 58, 675 (2008), arXiv: 0902.3586.

    Article  ADS  Google Scholar 

  16. S. Aaronson, and L. Chen, in Complexity-theoretic Foundations of Quantum Supremacy Experiments: 32nd Computational Complexity Conference (CCC 2017), editor by R. O’Donnell (Schloss Dagstuhl, Dagstuhl, 2017), pp. 22:1–22:67.

  17. J. Wu, Y. Liu, B. Zhang, X. Jin, Y. Wang, H. Wang, and X. Yang, Natl. Sci. Rev. 5, 715 (2018).

    Article  Google Scholar 

  18. A. Neville, C. Sparrow, R. Clifford, E. Johnston, P. M. Birchall, A. Montanaro, and A. Laing, Nat. Phys. 13, 1153 (2017).

    Article  Google Scholar 

  19. C. Guo, Y. Liu, M. Xiong, S. Xue, X. Fu, A. Huang, X. Qiang, P. Xu, J. Liu, S. Zheng, H. Huang, M. Deng, D. Poletti, W. Bao, and J. Wu, Phys. Rev. Lett. 123, 190501 (2019).

    Article  ADS  Google Scholar 

  20. H. L. Huang, W. S. Bao, and C. Guo, Phys. Rev. A 100, 032305 (2019), arXiv: 1812.06614.

    Article  ADS  Google Scholar 

  21. Z. Y. Chen, Q. Zhou, C. Xue, X. Yang, G. C. Guo, and G. P. Guo, Sci. Bull. 63, 964 (2018).

    Article  Google Scholar 

  22. N. Mahmud, E. El-Araby, and D. Caliga, Quantum Eng. 1, 1350045 (2019).

    Article  Google Scholar 

  23. M. Bentivegna, N. Spagnolo, C. Vitelli, D. J. Brod, A. Crespi, F. Flamini, R. Ramponi, P. Mataloni, R. Osellame, E. F. Galvão, and F. Sciarrino, Int. J. Quantum Inform. 12, 1560028 (2014).

    Article  ADS  Google Scholar 

  24. S. Aaronson, and A. Arkhipov, Quantum Inf. Comput. 14, 1383 (2014).

    MathSciNet  Google Scholar 

  25. I. Agresti, N. Viggianiello, F. Flamini, N. Spagnolo, A. Crespi, R. Osellame, N. Wiebe, and F. Sciarrino, Phys. Rev. X 9, 011013 (2019).

    Google Scholar 

  26. H. Wang, Y. He, Y. H. Li, Z. E. Su, B. Li, H. L. Huang, X. Ding, M. C. Chen, C. Liu, J. Qin, J. P. Li, Y. M. He, C. Schneider, M. Kamp, C. Z. Peng, S. Höfling, C. Y. Lu, and J. W. Pan, Nat. Photon. 11, 361 (2017).

    Article  ADS  Google Scholar 

  27. H. S. Zhong, L. C. Peng, Y. Li, Y. Hu, W. Li, J. Qin, D. Wu, W. Zhang, H. Li, L. Zhang, Z. Wang, L. You, X. Jiang, L. Li, N. L. Liu, J. P. Dowling, C. Y. Lu, and J. W. Pan, Sci. Bull. 64, 511 (2019).

    Article  Google Scholar 

  28. X. Sun, P. Wang, B. Sheng, T. Wang, Z. Chen, K. Gao, M. Li, J. Zhang, W. Ge, Y. Arakawa, B. Shen, M. Holmes, and X. Wang, Quantum Eng. 1, e20 (2019).

    Google Scholar 

  29. N. Viggianiello, F. Flamini, M. Bentivegna, N. Spagnolo, A. Crespi, D. J. Brod, E. F. Galvão, R. Osellame, and F. Sciarrino, Sci. Bull. 63, 1470 (2018).

    Article  Google Scholar 

  30. J. J. Renema, A. Menssen, W. R. Clements, G. Triginer, W. S. Kolthammer, and I. A. Walmsley, Phys. Rev. Lett. 120, 220502 (2018), arXiv: 1707.02793.

    Article  ADS  Google Scholar 

  31. M. Jerrum, A. Sinclair, and E. Vigoda, J. ACM 51, 671 (2004).

    Article  MathSciNet  Google Scholar 

  32. S. Chin, and J. Huh, arXiv: 1807.11187.

  33. M. C. Tichy, Phys. Rev. A 91, 022316 (2015), arXiv: 1410.7687.

    Article  ADS  Google Scholar 

  34. V. S. Shchesnovich, Int. J. Quantum Inform. 11, 1350045 (2013), arXiv: 1304.6675.

    Article  ADS  MathSciNet  Google Scholar 

  35. J. D. Urbina, J. Kuipers, S. Matsumoto, Q. Hummel, and K. Richter, Phys. Rev. Lett. 116, 100401 (2016), arXiv: 1409.1558.

    Article  ADS  Google Scholar 

  36. X. Liao, L. Xiao, C. Yang, and Y. Lu, Front. Comput. Sci. 8, 345 (2014).

    Article  MathSciNet  Google Scholar 

  37. X. Liao, Front. Comput. Sci. 8, 343 (2014).

    Article  MathSciNet  Google Scholar 

  38. E. Bax, and J. Franklin, A Finite-Difference Sieve to Compute the Permanent, Technical Report, CalTech-CS-TR-96-04 (1996).

  39. J. S. Liu, Stat. Comput. 6, 113 (1996).

    Article  Google Scholar 

  40. M. C. Tichy, M. Tiersch, F. de Melo, F. Mintert, and A. Buchleitner, Phys. Rev. Lett. 104, 220405 (2010), arXiv: 1002.5038.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JunJie Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Z., Liu, Y., Xu, P. et al. A Bayesian validation approach to practical boson sampling. Sci. China Phys. Mech. Astron. 63, 250311 (2020). https://doi.org/10.1007/s11433-019-1440-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1440-y

Keywords

Navigation