Pulsar candidate selection using ensemble networks for FAST drift-scan survey

Abstract

The Commensal Radio Astronomy Five-hundred-meter Aperture Spherical radio Telescope (FAST) Survey (CRAFTS) utilizes the novel drift-scan commensal survey mode of FAST and can generate billions of pulsar candidate signals. The human experts are not likely to thoroughly examine these signals, and various machine sorting methods are used to aid the classification of the FAST candidates. In this study, we propose a new ensemble classification system for pulsar candidates. This system denotes the further development of the pulsar image-based classification system (PICS), which was used in the Arecibo Telescope pulsar survey, and has been retrained and customized for the FAST drift-scan survey. In this study, we designed a residual network model comprising 15 layers to replace the convolutional neural networks (CNNs) in PICS. The results of this study demonstrate that the new model can sort >96% of real pulsars to belong the top 1% of all candidates and classify >1.6 million candidates per day using a dual-GPU and 24-core computer. This increased speed and efficiency can help to facilitate real-time or quasi-real-time processing of the pulsar-search data stream obtained from CRAFTS. In addition, we have published the labeled FAST data used in this study online, which can aid in the development of new deep learning techniques for performing pulsar searches.

This is a preview of subscription content, access via your institution.

References

  1. 1

    R. N. Manchester, A. G. Lyne, F. Camilo, J. F. Bell, V. M. Kaspi, N. D’Amico, N. P. F. McKay, F. Crawford, I. H. Stairs, A. Possenti, M. Kramer, and D. C. Sheppard, Mon. Not. R. Astron. Soc. 328, 17 (2001).

    ADS  Article  Google Scholar 

  2. 2

    S. Burke-Spolaor, M. Bailes, S. Johnston, S. D. Bates, N. D. R. Bhat, M. Burgay, N. D’Amico, A. Jameson, M. J. Keith, M. Kramer, L. Levin, S. Milia, A. Possenti, B. Stappers, and W. van Straten, Mon. Not. R. Astron. Soc. 416, 2465 (2011), arXiv: 1102.4111.

    ADS  Article  Google Scholar 

  3. 3

    J. S. Deneva, J. M. Cordes, M. A. McLaughlin, D. J. Nice, D. R. Lorimer, F. Crawford, N. D. R. Bhat, F. Camilo, D. J. Champion, P. C. C. Freire, S. Edel, V. I. Kondratiev, J. W. T. Hessels, F. A. Jenet, L. Kasian, V. M. Kaspi, M. Kramer, P. Lazarus, S. M. Ransom, I. H. Stairs, B. W. Stappers, J. van Leeuwen, A. Brazier, A. Venkataraman, J. A. Zollweg, and S. Bogdanov, Astrophys. J. 703, 2259 (2009), arXiv: 0811.2532.

    ADS  Article  Google Scholar 

  4. 4

    J. Boyles, R. S. Lynch, S. M. Ransom, I. H. Stairs, D. R. Lorimer, M. A. McLaughlin, J. W. T. Hessels, V. M. Kaspi, V. I. Kondratiev, A. Archibald, A. Berndsen, R. F. Cardoso, A. Cherry, C. R. Epstein, C. Karako-Argaman, C. A. McPhee, T. Pennucci, M. S. E. Roberts, K. Stovall, and J. van Leeuwen, Astrophys. J. 763, 80 (2013), arXiv: 1209.4293.

    ADS  Article  Google Scholar 

  5. 5

    K. Stovall, R. S. Lynch, S. M. Ransom, A. M. Archibald, S. Banaszak, C. M. Biwer, J. Boyles, L. P. Dartez, D. Day, A. J. Ford, J. Flanigan, A. Garcia, J. W. T. Hessels, J. Hinojosa, F. A. Jenet, D. L. Kaplan, C. Karako-Argaman, V. M. Kaspi, V. I. Kondratiev, S. Leake, D. R. Lorimer, G. Lunsford, J. G. Martinez, A. Mata, M. A. McLaughlin, M. S. E. Roberts, M. D. Rohr, X. Siemens, I. H. Stairs, J. van Leeuwen, A. N. Walker, and B. L. Wells, Astrophys. J. 791, 67 (2014), arXiv: 1406.5214.

    ADS  Article  Google Scholar 

  6. 6

    T. Coenen, J. van Leeuwen, J. W. T. Hessels, B. W. Stappers, V. I. Kondratiev, A. Alexov, R. P. Breton, A. Bilous, S. Cooper, H. Falcke, R. A. Fallows, V. Gajjar, J. M. Grießmeier, T. E. Hassall, A. Karastergiou, E. F. Keane, M. Kramer, M. Kuniyoshi, A. Noutsos, S. Osłowski, M. Pilia, M. Serylak, C. Schrijvers, C. Sobey, S. ter Veen, J. Verbiest, P. Weltevrede, S. Wijnholds, K. Zagkouris, A. S. van Amesfoort, J. Anderson, A. Asgekar, I. M. Avruch, M. E. Bell, M. J. Bentum, G. Bernardi, P. Best, A. Bonafede, F. Breitling, J. Broderick, M. Brüggen, H. R. Butcher, B. Ciardi, A. Corstanje, A. Deller, S. Duscha, J. Eislöffel, R. Fender, C. Ferrari, W. Frieswijk, M. A. Garrett, F. de Gasperin, E. de Geus, A.W. Gunst, J. P. Hamaker, G. Heald, M. Hoeft, A. van der Horst, E. Juette, G. Kuper, C. Law, G. Mann, R. McFadden, D. McKay-Bukowski, J. P. McKean, H. Munk, E. Orru, H. Paas, M. Pandey-Pommier, A. G. Polatidis, W. Reich, A. Renting, H. Röttgering, A. Rowlinson, A. M. M. Scaife, D. Schwarz, J. Sluman, O. Smirnov, J. Swinbank, M. Tagger, Y. Tang, C. Tasse, S. Thoudam, C. Toribio, R. Vermeulen, C. Vocks, R. J. van Weeren, O. Wucknitz, P. Zarka, and A. Zensus, Astron. Astrophys. 570, A60 (2014), arXiv: 1408.0411.

    Article  Google Scholar 

  7. 7

    R. S. Lynch, J. Boyles, S. M. Ransom, I. H. Stairs, D. R. Lorimer, M. A. McLaughlin, J. W. T. Hessels, V. M. Kaspi, V. I. Kondratiev, A. M. Archibald, A. Berndsen, R. F. Cardoso, A. Cherry, C. R. Epstein, C. Karako-Argaman, C. A. McPhee, T. Pennucci, M. S. E. Roberts, K. Stovall, and J. van Leeuwen, Astrophys. J. 763, 81 (2013), arXiv: 1209.4296.

    ADS  Article  Google Scholar 

  8. 8

    P. Jiang, Y. L. Yue, H. Q. Gan, R. Yao, H. Li, G. F. Pan, J. H. Sun, D. J. Yu, H. F. Liu, N. Y. Tang, L. Qian, J. G. Lu, J. Yan, B. Peng, S. X. Zhang, Q. M. Wang, Q. Li, D. Li, and FAST Collaboration, Sci. China-Phys. Mech. Astron. 62, 959502 (2019), arXiv: 1903.06324.

    Article  Google Scholar 

  9. 9

    D. Li, P. Wang, L. Qian, M. Krco, A. Dunning, P. Jiang, Y. Yue, C. Jin, Y. Zhu, Z. Pan, and R. Nan, IEEE Microwave 19, 112 (2018), arXiv: 1802.03709.

    ADS  Article  Google Scholar 

  10. 10

    R. J. Lyon, B. W. Stappers, S. Cooper, J. M. Brooke, and J. D. Knowles, Mon. Not. R. Astron. Soc. 459, 1104 (2016), arXiv: 1603.05166.

    ADS  Article  Google Scholar 

  11. 11

    M. J. Keith, A. Jameson, W. Van Straten, M. Bailes, S. Johnston, M. Kramer, A. Possenti, S. D. Bates, N. D. R. Bhat, M. Burgay, S. Burke-Spolaor, N. D’Amico, L. Levin, P. L. McMahon, S. Milia, and B. W. Stappers, Mon. Not. R. Astron. Soc. 409, 619 (2010), arXiv: 1006.5744.

    ADS  Article  Google Scholar 

  12. 12

    K. Wang, P. Guo, F. Yu, L. Duan, Y. Wang, and H. Du, Inter. J. Comput. Intel. Syst. 11, 575 (2018).

    ADS  Article  Google Scholar 

  13. 13

    R. P. Eatough, N. Molkenthin, M. Kramer, A. Noutsos, M. J. Keith, B. W. Stappers, and A. G. Lyne, Mon. Not. R. Astron. Soc. 407, 2443 (2010), arXiv: 1005.5068.

    ADS  Article  Google Scholar 

  14. 14

    K. J. Lee, K. Stovall, F. A. Jenet, J. Martinez, L. P. Dartez, A. Mata, G. Lunsford, S. Cohen, C. M. Biwer, M. Rohr, J. Flanigan, A. Walker, S. Banaszak, B. Allen, E. D. Barr, N. D. R. Bhat, S. Bogdanov, A. Brazier, F. Camilo, D. J. Champion, S. Chatterjee, J. Cordes, F. Crawford, J. Deneva, G. Desvignes, R. D. Ferdman, P. Freire, J. W. T. Hessels, R. Karuppusamy, V. M. Kaspi, B. Knispel, M. Kramer, P. Lazarus, R. Lynch, A. Lyne, M. McLaughlin, S. Ransom, P. Scholz, X. Siemens, L. Spitler, I. Stairs, M. Tan, J. van Leeuwen, and W. W. Zhu, Mon. Not. R. Astron. Soc. 433, 688 (2013), arXiv: 1305.0447.

    ADS  Article  Google Scholar 

  15. 15

    S. D. Bates, M. Bailes, B. R. Barsdell, N. D. R. Bhat, M. Burgay, S. Burke-Spolaor, D. J. Champion, P. Coster, N. D’Amico, A. Jameson, S. Johnston, M. J. Keith, M. Kramer, L. Levin, A. Lyne, S. Milia, C. Ng, C. Nietner, A. Possenti, B. Stappers, D. Thornton, and W. van Straten, Mon. Not. R. Astron. Soc. 427, 1052 (2012), arXiv: 1209.0793.

    ADS  Article  Google Scholar 

  16. 16

    V. Morello, E. D. Barr, M. Bailes, C. M. Flynn, E. F. Keane, and W. van Straten, Mon. Not. R. Astron. Soc. 443, 1651 (2014), arXiv: 1406.3627.

    ADS  Article  Google Scholar 

  17. 17

    P. Guo, F. Duan, P. Wang, Y. Yao, and X. Xin, arXiv: 1711.10339.

  18. 18

    L. Connor, and J. van Leeuwen, arXiv: 1803.03084.

  19. 19

    Y. G. Zhang, V. Gajjar, G. Foster, A. Siemion, J. Cordes, C. Law, and Y. Wang, Astrophys. J. 866, 149 (2018), arXiv: 1809.03043.

    ADS  Article  Google Scholar 

  20. 20

    V. Gajjar, A. P. V. Siemion, D. C. Price, C. J. Law, D. Michilli, J. W. T. Hessels, S. Chatterjee, A. M. Archibald, G. C. Bower, C. Brinkman, S. Burke-Spolaor, J. M. Cordes, S. Croft, J. E. Enriquez, G. Foster, N. Gizani, G. Hellbourg, H. Isaacson, V. M. Kaspi, T. J. W. Lazio, M. Lebofsky, R. S. Lynch, D. MacMahon, M. A. McLaughlin, S. M. Ransom, P. Scholz, A. Seymour, L. G. Spitler, S. P. Tendulkar, D. Werthimer, and Y. G. Zhang, Astrophys. J. 863, 2 (2018), arXiv: 1804.04101.

    ADS  Article  Google Scholar 

  21. 21

    W. W. Zhu, A. Berndsen, E. C. Madsen, M. Tan, I. H. Stairs, A. Brazier, P. Lazarus, R. Lynch, P. Scholz, K. Stovall, S. M. Ransom, S. Banaszak, C. M. Biwer, S. Cohen, L. P. Dartez, J. Flanigan, G. Lunsford, J. G. Martinez, A. Mata, M. Rohr, A. Walker, B. Allen, N. D. R. Bhat, S. Bogdanov, F. Camilo, S. Chatterjee, J. M. Cordes, F. Crawford, J. S. Deneva, G. Desvignes, R. D. Ferdman, P. C. C. Freire, J. W. T. Hessels, F. A. Jenet, D. L. Kaplan, V. M. Kaspi, B. Knispel, K. J. Lee, J. van Leeuwen, A. G. Lyne, M. A. McLaughlin, X. Siemens, L. G. Spitler, and A. Venkataraman, Astrophys. J. 781, 117 (2014), arXiv: 1309.0776.

    ADS  Article  Google Scholar 

  22. 22

    K. He, X. Zhang, S. Ren, and J. Sun, arXiv: 1512.03385.

  23. 23

    M. Hardt, and T. Ma, arXiv: 1611.04231.

  24. 24

    S. S. Du, W. Hu, and J. D. Lee, arXiv: 1806.00900.

Download references

Author information

Affiliations

Authors

Consortia

Corresponding authors

Correspondence to HongFeng Wang or WeiWei Zhu or Ping Guo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhu, W., Guo, P. et al. Pulsar candidate selection using ensemble networks for FAST drift-scan survey. Sci. China Phys. Mech. Astron. 62, 959507 (2019). https://doi.org/10.1007/s11433-018-9388-3

Download citation

Keywords

  • pulsars
  • neural networks
  • data analysis