Structure, charge transfer, and superconductivity of M-doped phenanthrene (M = Al, Ga, and In): A comparative study of K-doped cases

Abstract

Aromatic hydrocarbons doped with K have been shown to be potential high-temperature superconductors. To investigate the doping effects of trivalent metals (Al, Ga, and In) that have a smaller radii than K, we studied the crystal structure, stability, charge transfer, band structure, and superconductivity of trivalent metal-doped phenanthrene via first-principles calculations. Doping with Al/Ga/In considerably differs from doping with K and cannot be simply regarded as a linear developmental change in the structural and electronic characteristics caused by a change in the valence electron numbers. Al/Ga/In atoms are difficult to dope into the intralayer region, and the charge transfer is close to zero, which is far less than the effect of K doping. We found that the metallization of the Al/Ga/In-doped system originates from the formation of gap states instead of charge transfer. The weak superconductivity obtained in the Al/Ga/In-doped system is also different from the K-doped system. These results are helpful in terms of understanding the structure and superconductivity of metal-doped aromatic superconductors.

This is a preview of subscription content, log in to check access.

References

  1. 1

    V. L. Ginzburg, Phys. Lett. 13, 101 (1964).

    ADS  Article  Google Scholar 

  2. 2

    W. A. Little, Phys. Rev. 134, A1416 (1964).

    ADS  Article  Google Scholar 

  3. 3

    V. L. Ginzburg, Sov. Phys. Usp. 19, 174 (1976).

    ADS  Article  Google Scholar 

  4. 4

    R. Mitsuhashi, Y. Suzuki, Y. Yamanari, H. Mitamura, T. Kambe, N. Ikeda, H. Okamoto, A. Fujiwara, M. Yamaji, N. Kawasaki, Y. Maniwa, and Y. Kubozono, Nature 464, 76 (2010).

    ADS  Article  Google Scholar 

  5. 5

    Y. Kubozono, H. Mitamura, X. Lee, X. He, Y. Yamanari, Y. Takahashi, Y. Suzuki, Y. Kaji, R. Eguchi, K. Akaike, T. Kambe, H. Okamoto, A. Fujiwara, T. Kato, T. Kosugi, and H. Aoki, Phys. Chem. Chem. Phys. 13, 16476 (2011).

    Article  Google Scholar 

  6. 6

    X. F. Wang, R. H. Liu, Z. Gui, Y. L. Xie, Y. J. Yan, J. J. Ying, X. G. Luo, and X. H. Chen, Nat. Commun. 2, 507 (2011), arXiv: 1102.4075.

    ADS  Article  Google Scholar 

  7. 7

    Q. W. Huang, G. H. Zhong, J. Zhang, X. M. Zhao, C. Zhang, H. Q. Lin, and X. J. Chen, J. Chem. Phys. 140, 114301 (2014).

    ADS  Article  Google Scholar 

  8. 8

    M. Xue, T. Cao, D. Wang, Y. Wu, H. Yang, X. Dong, J. He, F. Li, and G. F. Chen, Sci. Rep. 2, 389 (2012).

    ADS  Article  Google Scholar 

  9. 9

    G. H. Zhong, D. Y. Yang, K. Zhang, R. S. Wang, C. Zhang, H. Q. Lin, and X. J. Chen, Phys. Chem. Chem. Phys. 20, 25217 (2018).

    Article  Google Scholar 

  10. 10

    R.-S. Wang, Y. Gao, Z.-B. Huang, and X.-J. Chen, arXiv: 1703.05803.

  11. 11

    R.-S. Wang, Y. Gao, Z.-B. Huang, and X.-J. Chen, arXiv: 1703.05804.

  12. 12

    R.-S. Wang, Y. Gao, Z.-B. Huang, and X.-J. Chen, arXiv: 1703.06641.

  13. 13

    H. Li, X. Zhou, S. Parham, T. Nummy, J. Griffith, K. Gordon, E. L. Chronister, and D. D. Dessau, arXiv: 1704.04230.

  14. 14

    W. Liu, H. Lin, R. Kang, X. Zhu, Y. Zhang, S. Zheng, and H. H. Wen, Phys. Rev. B 96, 224501 (2017), arXiv: 1706.06018.

    ADS  Article  Google Scholar 

  15. 15

    M. Q. Ren, W. Chen, Q. Liu, C. Chen, Y. J. Qiao, Y. J. Chen, G. Zhou, Z. H. Li, T. Zhang, Y. J. Yan, and D. L. Feng, Phys. Rev. B 99, 045417 (2019).

    ADS  Article  Google Scholar 

  16. 16

    P. Neha, A. Bhardwaj, V. Sahu, and S. Patnaik, Phys. C-Superconduct. Appl. 554, 1 (2018), arXiv: 1712.01766.

    ADS  Article  Google Scholar 

  17. 17

    J. F. Yan, G. H. Zhong, R. S. Wang, K. Zhang, H. Q. Lin, and X. J. Chen, J. Phys. Chem. Lett. 10, 40 (2019).

    Article  Google Scholar 

  18. 18

    G. Huang, G. H. Zhong, R. S. Wang, J. X. Han, H. Q. Lin, and X. J. Chen, Carbon 143, 837 (2019).

    Article  Google Scholar 

  19. 19

    A. F. Hebard, M. J. Rosseinsky, R. C. Haddon, D. W. Murphy, S. H. Glarum, T. T. M. Palstra, A. P. Ramirez, and A. R. Kortan, Nature 350, 600 (1991).

    ADS  Article  Google Scholar 

  20. 20

    A. Y. Ganin, Y. Takabayashi, Y. Z. Khimyak, S. Margadonna, A. Tamai, M. J. Rosseinsky, and K. Prassides, Nat. Mater. 7, 367 (2008).

    ADS  Article  Google Scholar 

  21. 21

    D. J¡äerome, A. Mazaud, M. Ribault, and K. Bechgaard, J. Phyique Lett. 41, 95 (1980).

    Article  Google Scholar 

  22. 22

    H. Taniguchi, M. Miyashita, K. Uchiyama, K. Satoh, N. Môri, H. Okamoto, K. Miyagawa, K. Kanoda, M. Hedo, and Y. Uwatoko, J. Phys. Soc. Jpn. 72, 468 (2003).

    ADS  Article  Google Scholar 

  23. 23

    S. Heguri, Q. Thi Nhu Phan, Y. Tanabe, and K. Tanigaki, Phys. Rev. B 90, 134519 (2014).

    ADS  Article  Google Scholar 

  24. 24

    Y. Wang, J. Lv, L. Zhu, and Y. Ma, Phys. Rev. B 82, 094116 (2010), arXiv: 1008.3601.

    ADS  Article  Google Scholar 

  25. 25

    Y. Wang, J. Lv, L. Zhu, and Y. Ma, Comput. Phys. Commun. 183, 2063 (2012), arXiv: 1205.2264.

    ADS  Article  Google Scholar 

  26. 26

    G. Kresse, and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  27. 27

    G. Kresse, and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    ADS  Article  Google Scholar 

  28. 28

    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    ADS  Article  Google Scholar 

  29. 29

    K. Lee, D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. B 82, 081101 (2010), arXiv: 1003.5255.

    ADS  Article  Google Scholar 

  30. 30

    G. H. Zhong, C. Zhang, X. Yan, X. Li, Z. Du, G. Jing, and C. Ma, Mol. Phys. 115, 472 (2017).

    ADS  Article  Google Scholar 

  31. 31

    X. Wang, G. Zhong, X. Yan, X. Chen, and H. Lin, J. Phys. Chem. Solids 104, 56 (2017).

    ADS  Article  Google Scholar 

  32. 32

    G. H. Zhong, X. H. Wang, R. S. Wang, J. X. Han, C. Zhang, X. J. Chen, and H. Q. Lin, J. Phys. Chem. C 122, 3801 (2018).

    Article  Google Scholar 

  33. 33

    S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).

    ADS  Article  Google Scholar 

  34. 34

    N. Troullier, and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

    ADS  Article  Google Scholar 

  35. 35

    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys.-Condens. Matter 21, 395502 (2009), arXiv: 0906.2569.

    Article  Google Scholar 

  36. 36

    P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio Jr, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H. Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H. V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, and S. Baroni, J. Phys.-Condens. Matter 29, 465901 (2017), arXiv: 1709.10010.

    Article  Google Scholar 

  37. 37

    X. W. Yan, C. Zhang, G. Zhong, D. Ma, and M. Gao, J. Mater. Chem. C 4, 11566 (2016).

    Article  Google Scholar 

  38. 38

    G. Zhong, K. Zhang, F. He, X. Ma, L. Lu, Z. Liu, and C. Yang, Phys. B-Condens. Matter 407, 3818 (2012).

    ADS  Article  Google Scholar 

  39. 39

    G. Zhong, C. Zhang, X. Chen, Y. Li, R. Zhang, and H. Lin, J. Phys. Chem. C 116, 5225 (2012).

    Article  Google Scholar 

  40. 40

    Y. Cheng, C. Zhang, T. Wang, G. Zhong, C. Yang, X. J. Chen, and H. Q. Lin, Sci. Rep. 5, 16475 (2015).

    ADS  Article  Google Scholar 

  41. 41

    G. Zhong, Z. Huang, and H. Lin, IEEE Trans. Magn. 50, 1700103 (2014).

    Article  Google Scholar 

  42. 42

    M. Casula, M. Calandra, G. Profeta, and F. Mauri, Phys. Rev. Lett. 107, 137006 (2011), arXiv: 1106.1446.

    ADS  Article  Google Scholar 

  43. 43

    P. B. Allen, and R. C. Dynes, Phys. Rev. B 12, 905 (1975).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Guo-Hua Zhong or Ming Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lv, H., Zhong, G., Chen, M. et al. Structure, charge transfer, and superconductivity of M-doped phenanthrene (M = Al, Ga, and In): A comparative study of K-doped cases. Sci. China Phys. Mech. Astron. 62, 957412 (2019). https://doi.org/10.1007/s11433-018-9362-x

Download citation

Keywords

  • phenanthrene
  • aromatic hydrocarbons
  • trivalent metals
  • charge transfer
  • superconductivity