Skip to main content

PeV neutrinos from wind breakouts of type II supernovae

Abstract

Recently, rapid multiwavelength photometry and flash spectra of supernova (SN) 2013fs imply that the progenitor stars of regular type II supernovae (SNe II) may be commonly surrounded by a confined, dense stellar wind ejected from the progenitor star at a large mass loss rate over few years before the SNe. Based on the assumption that the pre-SN progenitor stars of SNe II emit wind similar to SN 2013fs, with a mass loss rate \(\dot{M}\;\sim\;3\times10^{-3}(v_w/100\;{\rm{km}\;s^{-1})}M_\odot\;\rm{yr}^{-1}\), we investigated neutrino emissions during the wind breakouts of SN shocks. We find that a typical SNe II can convert ~ 10.3 of their bulk kinetic energy into neutrino emissions, contributing a significant fraction of the IceCube-detected neutrino flux at ≳ 300 TeV. Moreover, ≲ 200 TeV IceCube neutrinos can be accounted for by the cosmic rays produced by shocks of all SN remnants, losing energy in their host galaxies, i.e., the starburst galaxies. The future follow-up observations of high energy neutrinos and gamma-rays from nearby individual SNe II, days to weeks after the explosions, will test this model.

This is a preview of subscription content, access via your institution.

References

  1. E. Waxman, and B. Katz, arXiv: 1607.01293.

  2. S. Campana, V. Mangano, A. J. Blustin, P. Brown, D. N. Burrows, G. Chincarini, J. R. Cummings, G. Cusumano, M. D. Valle, D. Malesani, P. Mészáros, J. A. Nousek, M. Page, T. Sakamoto, E. Waxman, B. Zhang, Z. G. Dai, N. Gehrels, S. Immler, F. E. Marshall, K. O. Mason, A. Moretti, P. T. O’Brien, J. P. Osborne, K. L. Page, P. Romano, P. W. A. Roming, G. Tagliaferri, L. R. Cominsky, P. Giommi, O. Godet, J. A. Kennea, H. Krimm, L. Angelini, S. D. Barthelmy, P. T. Boyd, D. M. Palmer, A. A. Wells, and N. E. White, Nature 442, 1008 (2006).

    ADS  Article  Google Scholar 

  3. A. M. Soderberg, E. Berger, K. L. Page, P. Schady, J. Parrent, D. Pooley, X. Y. Wang, E. O. Ofek, A. Cucchiara, A. Rau, E. Waxman, J. D. Simon, D. C. J. Bock, P. A. Milne, M. J. Page, J. C. Barentine, S. D. Barthelmy, A. P. Beardmore, M. F. Bietenholz, P. Brown, A. Burrows, D. N. Burrows, G. Byrngelson, S. B. Cenko, P. Chandra, J. R. Cummings, D. B. Fox, A. Gal-Yam, N. Gehrels, S. Immler, M. Kasliwal, A. K. H. Kong, H. A. Krimm, S. R. Kulkarni, T. J. Maccarone, P. Mészáros, E. Nakar, P. T. O’Brien, R. A. Overzier, M. de Pasquale, J. Racusin, N. Rea, and D. G. York, Nature 453, 469 (2008), arXiv: 0802.1712.

    ADS  Article  Google Scholar 

  4. K. Schawinski, S. Justham, C. Wolf, P. Podsiadlowski, M. Sullivan, K. C. Steenbrugge, T. Bell, H. J. Roser, E. S. Walker, P. Astier, D. Balam, C. Balland, R. Carlberg, A. Conley, D. Fouchez, J. Guy, D. Hardin, I. Hook, D. A. Howell, R. Pain, K. Perrett, C. Pritchet, N. Regnault, and S. K. Yi, Science 321, 223 (2008), arXiv: 0803.3596.

    ADS  Article  Google Scholar 

  5. E. O. Ofek, I. Rabinak, J. D. Neill, I. Arcavi, S. B. Cenko, E. Waxman, S. R. Kulkarni, A. Gal-Yam, P. E. Nugent, L. Bildsten, J. S. Bloom, A. V. Filippenko, K. Forster, D. A. Howell, J. Jacobsen, M. M. Kasliwal, N. Law, C. Martin, D. Poznanski, R. M. Quimby, K. J. Shen, M. Sullivan, R. Dekany, G. Rahmer, D. Hale, R. Smith, J. Zolkower, V. Velur, R. Walters, J. Henning, K. Bui, and D. McKenna, Astrophys. J. 724, 1396 (2010), arXiv: 1009.5378.

    ADS  Article  Google Scholar 

  6. S. Gezari, D. O. Jones, N. E. Sanders, A. M. Soderberg, T. Hung, S. Heinis, S. J. Smartt, A. Rest, D. Scolnic, R. Chornock, E. Berger, R. J. Foley, M. E. Huber, P. Price, C. W. Stubbs, A. G. Riess, R. P. Kirshner, K. Smith, W. M. Wood-Vasey, D. Schiminovich, D. C. Martin, W. S. Burgett, K. C. Chambers, H. Flewelling, N. Kaiser, J. L. Tonry, and R. Wainscoat, Astrophys. J. 804, 28 (2015), arXiv: 1502.06964.

    ADS  Article  Google Scholar 

  7. P. M. Garnavich, B. E. Tucker, A. Rest, E. J. Shaya, R. P. Olling, D. Kasen, and A. Villar, Astrophys. J. 820, 23 (2016), arXiv: 1603.05657.

    ADS  Article  Google Scholar 

  8. E. Waxman, and A. Loeb, Phys. Rev. Lett. 87, 071101 (2001).

    ADS  Article  Google Scholar 

  9. K. Murase, T. A. Thompson, B. C. Lacki, and J. F. Beacom, Phys. Rev. D 84, 043003 (2011), arXiv: 1012.2834.

    ADS  Article  Google Scholar 

  10. B. Katz, N. Sapir, and E. Waxman, Proc. IAU 7, 274 (2011).

    Article  Google Scholar 

  11. K. Kashiyama, K. Murase, S. Horiuchi, S. Gao, and P. Mészáros, Astrophys. J. 769, L6 (2013), arXiv: 1210.8147.

    ADS  Article  Google Scholar 

  12. V. N. Zirakashvili, and V. S. Ptuskin, Astropart. Phys. 78, 28 (2016), arXiv: 1510.08387.

    ADS  Article  Google Scholar 

  13. M. Petropoulou, S. Coenders, G. Vasilopoulos, A. Kamble, and L. Sironi, Mon. Not. R. Astron. Soc. 470, 1881 (2017), arXiv: 1705.06752.

    ADS  Article  Google Scholar 

  14. O. Yaron, D. A. Perley, A. Gal-Yam, J. H. Groh, A. Horesh, E. O. Ofek, S. R. Kulkarni, J. Sollerman, C. Fransson, A. Rubin, P. Szabo, N. Sapir, F. Taddia, S. B. Cenko, S. Valenti, I. Arcavi, D. A. Howell, M. M. Kasliwal, P. M. Vreeswijk, D. Khazov, O. D. Fox, Y. Cao, O. Gnat, P. L. Kelly, P. E. Nugent, A. V. Filippenko, R. R. Laher, P. R. Wozniak, W. H. Lee, U. D. Rebbapragada, K. Maguire, M. Sullivan, and M. T. Soumagnac, Nat. Phys. 13, 510 (2017), arXiv: 1701.02596.

    Article  Google Scholar 

  15. M. G. Aartsen, et al. (IceCube Collaboration), Phys. Rev. Lett. 111, 021103 (2013), arXiv: 1304.5356.

    ADS  Article  Google Scholar 

  16. M. G. Aartsen, et al. (IceCube Collaboration), Science 342, 1242856 (2013), arXiv: 1311.5238.

    Article  Google Scholar 

  17. M. G. Aartsen, et al. (IceCube Collaboration), Astrophys. J. 835, 151 (2017), arXiv: 1609.04981.

    ADS  Article  Google Scholar 

  18. B. Wang, X. Zhao, and Z. Li, J. Cosmol. Astropart. Phys. 2014(11), 028 (2014), arXiv: 1407.2536.

    Article  Google Scholar 

  19. B. Wang, and Z. Li, Sci. China-Phys. Mech. Astron. 59, 619502 (2016), arXiv: 1505.04418.

    Article  Google Scholar 

  20. K. Murase, and E. Waxman, Phys. Rev. D 94, 103006 (2016), arXiv: 1607.01601.

    ADS  Article  Google Scholar 

  21. B. T. Zhang, and Z. Li, J. Cosmol. Astropart. Phys. 2017(03), 024 (2017), arXiv: 1607.02211.

    Article  Google Scholar 

  22. M. G. Aartsen, et al. (IceCube Collaboration), Astrophys. J. 835, 45 (2017), arXiv: 1611.03874.

    ADS  Article  Google Scholar 

  23. M. G. Aartsen, et al. (IceCube Collaboration), Astrophys. J. 843, 112 (2017), arXiv: 1702.06868.

    ADS  Article  Google Scholar 

  24. M. G. Aartsen, et al. (IceCube Collaboration), arXiv: 1710.01191.

  25. M. G. Aartsen, et al. (IceCube Collaboration), Astrophys. J. 833, 3 (2016), arXiv: 1607.08006.

    ADS  Article  Google Scholar 

  26. K. Murase, arXiv: 1705.04750.

  27. C. D. Matzner, and C. F. McKee, Astrophys. J. 510, 379 (1999).

    ADS  Article  Google Scholar 

  28. G. Giacinti, and A. R. Bell, Mon. Not. R. Astron. Soc. 449, 3693 (2015), arXiv: 1503.04170.

    ADS  Article  Google Scholar 

  29. R. Blandford, and D. Eichler, Phys. Rep. 154, 1 (1987).

    ADS  Article  Google Scholar 

  30. H. J. Völk, E. G. Berezhko, and L. T. Ksenofontov, Astron. Astrophys. 433, 229 (2005).

    ADS  Article  Google Scholar 

  31. Y. Uchiyama, F. A. Aharonian, T. Tanaka, T. Takahashi, and Y. Maeda, Nature 449, 576 (2007).

    ADS  Article  Google Scholar 

  32. W. Wang, and Z. Li, Astrophys. J. 789, 123 (2014), arXiv: 1405.6463.

    ADS  Article  Google Scholar 

  33. S. R. Kelner, F. A. Aharonian, and V. V. Bugayov, Phys. Rev. D 74, 034018 (2006).

    ADS  Article  Google Scholar 

  34. V. Ptuskin, V. Zirakashvili, and E. S. Seo, Astrophys. J. 718, 31 (2010), arXiv: 1006.0034.

    ADS  Article  Google Scholar 

  35. R. Abbasi, et al. (IceCube Collaboration), Phys. Rev. D 83, 012001 (2011), arXiv: 1010.3980.

    ADS  Article  Google Scholar 

  36. E. Waxman, and J. Bahcall, Phys. Rev. D 59, 023002 (1998).

    ADS  Article  Google Scholar 

  37. W. Li, R. Chornock, J. Leaman, A. V. Filippenko, D. Poznanski, X. Wang, M. Ganeshalingam, and F. Mannucci, Mon. Not. R. Astron. Soc. 412, 1473 (2011), arXiv: 1006.4613.

    ADS  Article  Google Scholar 

  38. A. Loeb, and E. Waxman, J. Cosmol. Astropart. Phys. 2006(05), 003 (2006).

    Article  Google Scholar 

  39. B. Katz, E. Waxman, T. Thompson, and A. Loeb, arXiv: 1311.0287.

  40. M. Ackermann, et al. (Fermi-LAT Collaboration), Astrophys. J. 755, 164 (2012), arXiv: 1206.1346.

    ADS  Article  Google Scholar 

  41. F. K. Peng, X. Y. Wang, R. Y. Liu, Q. W. Tang, and J. F. Wang, Astrophys. J. 821, L20 (2016), arXiv: 1603.06355.

    ADS  Article  Google Scholar 

  42. K. Murase, M. Ahlers, and B. C. Lacki, Phys. Rev. D 88, 121301 (2013), arXiv: 1306.3417.

    ADS  Article  Google Scholar 

  43. K. Bechtol, M. Ahlers, M. D. Mauro, M. Ajello, and J. Vandenbroucke, Astrophys. J. 836, 47 (2017), arXiv: 1511.00688.

    ADS  Article  Google Scholar 

  44. M. Ackermann, et al. (IceCube Gen2 Collaboration), arXiv: 1710.01207.

  45. G. Di Sciascio, Nucl. Particle Phys. Proc. 279-281, 166 (2016), arXiv: 1602.07600.

    ADS  Article  Google Scholar 

  46. B. Baret, and V. van Elewyck, Rep. Prog. Phys. 74, 046902 (2011).

    ADS  Article  Google Scholar 

  47. F. Förster, T. J. Moriya, J. C. Maureira, J. P. Anderson, S. Blinnikov, F. Bufano, G. Cabrera-Vives, A. Clocchiatti, T. de Jaeger, P. A. Estévez, L. Galbany, S. González-Gaitán, G. Gräfener, M. Hamuy, E. Y. Hsiao, P. Huentelemu, P. Huijse, H. Kuncarayakti, J. Martínez, G. Medina, F. E. Olivares, G. Pignata, A. Razza, I. Reyes, J. S. Martín, R. C. Smith, E. Vera, A. K. Vivas, A. de Ugarte Postigo, S. C. Yoon, C. Ashall, M. Fraser, A. Gal-Yam, E. Kankare, L. Le Guillou, P. A. Mazzali, N. A. Walton, and D. R. Young, Nat. Astron. 2, 808 (2018).

    ADS  Article  Google Scholar 

  48. M. G. Aartsen, et al. (IceCube, Fermi-LAT, MAGIC, AGILE, ASASSN, HAWC, H.E.S.S., INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool Telescope, Subaru, Swift NuSTAR, VERITAS and VLA/17B-403 Collaborations), Science 361, eaat1378 (2018), arXiv: 1807.08816.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuo Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z. PeV neutrinos from wind breakouts of type II supernovae. Sci. China Phys. Mech. Astron. 62, 959511 (2019). https://doi.org/10.1007/s11433-018-9350-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9350-3

Keywords

  • neutrinos
  • gamma rays
  • supernovae