Skip to main content

Manipulation of multi-transparency windows and fast-slow light transitions in a hybrid cavity optomechanical system

Abstract

We study the generation of quadruple-transparency windows and the implementation of a conversion between slow and fast light in a hybrid optomechanical system. By demonstrating the generation of these transparency windows one by one, we analyze the physical mechanism through which each transparency window forms in detail. Additionally, we discuss how the system param- eters affect the formation of transparency windows and conclude that the location, width, and absorption of each transparency window can be arbitrarily manipulated by varying the appropriate parameters. Moreover, when the pump field is changed from red to blue detuning, conversions between slow and fast light occur in the output field. These interesting properties of the output field can be applied to achieve the coherent control and manipulation of light pulses using cavity optomechanical system.

This is a preview of subscription content, access via your institution.

References

  1. D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, Phys. Rev. Lett. 98, 030405 (2007).

    ADS  Article  Google Scholar 

  2. A. Mari, and J. Eisert, Phys. Rev. Lett. 103, 213603 (2009), arXiv: 0911.0433.

    ADS  Article  Google Scholar 

  3. I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, Phys. Rev. Lett. 99, 093901 (2007).

    ADS  Article  Google Scholar 

  4. F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Phys. Rev. Lett. 99, 093902 (2007).

    ADS  Article  Google Scholar 

  5. D. Y. Wang, C. H. Bai, S. Liu, S. Zhang, and H. F. Wang, Phys. Rev. A 98, 023816 (2018), arXiv: 1811.05645.

    ADS  Article  Google Scholar 

  6. H. Ian, Z. R. Gong, Y. Liu, C. P. Sun, and F. Nori, Phys. Rev. A 78, 013824 (2008), arXiv: 0803.0776.

    ADS  Article  Google Scholar 

  7. J. Q. Liao, and L. Tian, Phys. Rev. Lett. 116, 163602 (2016), arXiv: 1512.07609.

    ADS  Article  Google Scholar 

  8. M. Abdi, P. Degenfeld-Schonburg, M. Sameti, C. Navarrete-Benlloch, and M. J. Hartmann, Phys. Rev. Lett. 116, 233604 (2016), arXiv: 1602.07922.

    ADS  Article  Google Scholar 

  9. V. Macri, L. Garziano, A. Ridolfo, O. Di Stefano, and S. Savasta, Phys. Rev. A 94, 013817 (2016).

    ADS  Article  Google Scholar 

  10. H. Tan, Y. Wei, and G. Li, Phys. Rev. A 96, 052331 (2017).

    ADS  Article  Google Scholar 

  11. P. Rabl, Phys. Rev. Lett. 107, 063601 (2011), arXiv: 1102.0278.

    ADS  Article  Google Scholar 

  12. T. P. Purdy, P. L. Yu, R. W. Peterson, N. S. Kampel, and C. A. Regal, Phys. Rev. X 3, 031012 (2013), arXiv: 1306.1268.

    Google Scholar 

  13. Y. D. Wang, S. Chesi, and A. A. Clerk, Phys. Rev. A 91, 013807 (2015), arXiv: 1406.7829.

    ADS  Article  Google Scholar 

  14. X. B. Yan, Phys. Rev. A 96, 053831 (2017), arXiv: 1707.02228.

    ADS  Article  Google Scholar 

  15. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014), arXiv: 1303.0733.

    ADS  Article  Google Scholar 

  16. H. Xiong, and Y. Wu, Appl. Phys. Rev. 5, 031305 (2018).

    ADS  Article  Google Scholar 

  17. G. S. Agarwal, and S. Huang, Phys. Rev. A 81, 041803 (2010), arXiv: 0911.4157.

    ADS  Article  Google Scholar 

  18. S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, Science 330, 1520 (2010), arXiv: 1007.0565.

    ADS  Article  Google Scholar 

  19. P. C. Ma, J. Q. Zhang, Y. Xiao, M. Feng, and Z. M. Zhang, Phys. Rev. A 90, 043825 (2014), arXiv: 1405.2410.

    ADS  Article  Google Scholar 

  20. S. Huang, J. Phys. B-At. Mol. Opt. Phys. 47, 055504 (2014), arXiv: 1301.5099.

    ADS  Article  Google Scholar 

  21. S. Huang, and G. S. Agarwal, Phys. Rev. A 81, 033830 (2010), arXiv: 0909.1862.

    ADS  Article  Google Scholar 

  22. G. S. Agarwal, and S. Huang, Phys. Rev. A 85, 021801 (2012), arXiv: 1109.4361.

    ADS  Article  Google Scholar 

  23. J. Q. Zhang, Y. Li, M. Feng, and Y. Xu, Phys. Rev. A 86, 053806 (2012), arXiv: 1208.0067.

    ADS  Article  Google Scholar 

  24. Q. Wang, J. Q. Zhang, P. C. Ma, C. M. Yao, and M. Feng, Phys. Rev. A 91, 063827 (2015), arXiv: 1506.00812.

    ADS  Article  Google Scholar 

  25. Y. Guo, K. Li, W. Nie, and Y. Li, Phys. Rev. A 90, 053841 (2014), arXiv: 1407.5202.

    ADS  Article  Google Scholar 

  26. Y. C. Liu, Y. F. Xiao, X. Luan, Q. Gong, and C. W. Wong, Phys. Rev. A 91,033818 (2015).

    Google Scholar 

  27. Y. M. Liu, C. H. Bai, D. Y. Wang, T. Wang, M. H. Zheng, H. F. Wang, A. D. Zhu, and S. Zhang, Opt. Express 26, 6143 (2018).

    ADS  Article  Google Scholar 

  28. D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, Sci. Rep. 6, 24421 (2016), arXiv: 1512.06536.

    ADS  Article  Google Scholar 

  29. D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, Sci. Rep. 6, 38559 (2016), arXiv: 1605.00736.

    ADS  Article  Google Scholar 

  30. A. Dalafi, M. H. Naderi, and A. Motazedifard, Phys. Rev. A 97, 043619 (2018), arXiv: 1802.10394.

    ADS  Article  Google Scholar 

  31. A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, Nature 472, 69 (2011), arXiv: 1012.1934.

    ADS  Article  Google Scholar 

  32. B. Chen, C. Jiang, and K. D. Zhu, Phys. Rev. A 83, 055803 (2011).

    ADS  Article  Google Scholar 

  33. D. Tarhan, S. Huang, and E. Mustecaplöglu, Phys. Rev. A 87, 013824 (2013), arXiv: 1210.6830.

    ADS  Article  Google Scholar 

  34. C. Jiang, H. Liu, Y. Cui, X. Li, G. Chen, and B. Chen, Opt. Express 21, 12165 (2013), arXiv: 1301.1382.

    ADS  Article  Google Scholar 

  35. M. J. Akram, M. M. Khan, and F. Saif, Phys. Rev. A 92, 023846 (2015), arXiv: 1501.06062.

    ADS  Article  Google Scholar 

  36. Z. Wu, R. H. Luo, J. Q. Zhang, Y. H. Wang, W. Yang, and M. Feng, Phys. Rev. A 96, 033832 (2017), arXiv: 1705.06200.

    ADS  Article  Google Scholar 

  37. K. Totsuka, N. Kobayashi, and M. Tomita, Phys. Rev. Lett. 98, 213904 (2007).

    ADS  Article  Google Scholar 

  38. J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, Nat. Commun. 3, 1196 (2012), arXiv: 1206.0704.

    ADS  Article  Google Scholar 

  39. S. Camerer, M. Korppi, A. Jockel, D. Hunger, T. W. Hänsch, and P. Treutlein, Phys. Rev. Lett. 107, 223001 (2011), arXiv: 1107.3650.

    ADS  Article  Google Scholar 

  40. S. B. Shim, M. Imboden, and P. Mohanty, Science 316, 95 (2007).

    ADS  Article  Google Scholar 

  41. H. Okamoto, A. Gourgout, C. Y. Chang, K. Onomitsu, I. Mahboob, E. Y. Chang, and H. Yamaguchi, Nat. Phys. 9, 480 (2013), arXiv: 1212.3097.

    Article  Google Scholar 

  42. M. Spletzer, A. Raman, A. Q. Wu, X. Xu, and R. Reifenberger, Appl. Phys. Lett. 88, 254102 (2006).

    ADS  Article  Google Scholar 

  43. B. P. Hou, L. F. Wei, and S. J. Wang, Phys. Rev. A 92, 033829 (2015).

    ADS  Article  Google Scholar 

  44. W. Gu, and Z. Yi, Opt. Commun. 333, 261 (2014).

    ADS  Article  Google Scholar 

  45. H. Jing, K. Özdemir, Z. Geng, J. Zhang, X. Y. Lu, B. Peng, L. Yang, and F. Nori, Sci. Rep. 5, 9663 (2015).

    Article  Google Scholar 

  46. A. Sohail, Y. Zhang, J. Zhang, and C. Yu, Sci. Rep. 6, 28830 (2016), arXiv: 1606.05866.

    ADS  Article  Google Scholar 

  47. W. Li, Y. Jiang, C. Li, and H. Song, Sci. Rep. 6, 31095 (2016).

    ADS  Article  Google Scholar 

  48. M. J. Hartmann, F. G. S. L. Brandao, and M. B. Plenio, Laser Photon. Rev. 2, 527 (2008), arXiv: 0808.2557.

    ADS  Article  Google Scholar 

  49. C. H. Bai, D. Y. Wang, H. F. Wang, A. D. Zhu, and S. Zhang, Sci. Rep. 6, 33404 (2016), arXiv: 1602.00781.

    ADS  Article  Google Scholar 

  50. C. H. Bai, D. Y. Wang, H. F. Wang, A. D. Zhu, and S. Zhang, Sci. Rep. 7, 2545 (2017).

    ADS  Article  Google Scholar 

  51. Y. Xing, L. Qi, J. Cao, D. Y. Wang, C. H. Bai, W. X. Cui, H. F. Wang, A. D. Zhu, and S. Zhang, Opt. Express 26, 16250 (2018), arXiv: 1811.06167.

    ADS  Article  Google Scholar 

  52. D. F. Walls, and G. J. Milburn, Quantum OPtics (Springer Science & Business Media, Berlin/Heidelberg, 2007).

    MATH  Google Scholar 

  53. S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, Nature 460, 724 (2009), arXiv: 0903.5293.

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shou Zhang, Cheng-Shou An or Hong-Fu Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, MH., Wang, T., Wang, DY. et al. Manipulation of multi-transparency windows and fast-slow light transitions in a hybrid cavity optomechanical system. Sci. China Phys. Mech. Astron. 62, 950311 (2019). https://doi.org/10.1007/s11433-018-9341-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9341-3

Keywords

  • hybrid cavity optomechanical system
  • optomechanical induced transparency
  • fast-slow light