Skip to main content

Existence criteria and validity of plate models for graphene-like materials

Abstract

Graphene-like (GL) materials have enriched the application prospects of two-dimensional materials by virtue of their various structures and properties. However, the following theoretical issues remain unsolved: how can stable GL materials exist and is plate idealization valid for any GL materials? Here we answer these questions based on an atomistic potential-based approach. The existence criteria for GL materials with three common structures, including planar honeycomb (PH), buckled honeycomb (BH), and honeycomb MX2 (2H-MX2) structures, were established. Moreover, the validity of classic linear-elastic plate models for these materials was examined. A validity factor, which represents the validity of using thin plate models to investigate the overall mechanical response of GL sheets, was defined. We determined that 2H-MX2 sheets can approximately be modeled as thin plates for arbitrary loadings, unlike PH and BH sheets.

This is a preview of subscription content, access via your institution.

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).

    ADS  Article  Google Scholar 

  2. K. S. Novoselov, Rev. Mod. Phys. 83, 837 (2011).

    ADS  Article  Google Scholar 

  3. P. R. Wallace, Phys. Rev. 71, 622 (1947).

    ADS  Article  Google Scholar 

  4. M. Xu, T. Liang, M. Shi, and H. Chen, Chem. Rev. 113, 3766 (2013).

    Article  Google Scholar 

  5. B. Feng, Z. Ding, S. Meng, Y. Yao, X. He, P. Cheng, L. Chen, and K. Wu, Nano Lett. 12, 3507 (2012), arXiv: 1203.2745.

    ADS  Article  Google Scholar 

  6. N. Alem, R. Erni, C. Kisielowski, M. D. Rossell, W. Gannett, and A. Zettl, Phys. Rev. B 80, 155425 (2009).

    ADS  Article  Google Scholar 

  7. S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, Nat. Rev. Mater. 2, 17033 (2017).

    ADS  Article  Google Scholar 

  8. L. Li, S. Lu, J. Pan, Z. Qin, Y. Wang, Y. Wang, G. Cao, S. Du, and H. J. Gao, Adv. Mater. 26, 4820 (2014).

    Article  Google Scholar 

  9. F. F. Zhu, W. J. Chen, Y. Xu, C. L. Gao, D. D. Guan, C. H. Liu, D. Qian, S. C. Zhang, and J. F. Jia, Nat. Mater. 14, 1020 (2015), arXiv: 1506.01601.

    ADS  Article  Google Scholar 

  10. P. Joensen, R. F. Frindt, and S. R. Morrison, Mater. Res. Bull. 21, 457 (1986).

    Article  Google Scholar 

  11. X. Wang, Y. Gong, G. Shi, W. L. Chow, K. Keyshar, G. Ye, R. Vajtai, J. Lou, Z. Liu, E. Ringe, B. K. Tay, and P. M. Ajayan, ACS Nano 8, 5125 (2014).

    Article  Google Scholar 

  12. J. Chen, B. Liu, Y. Liu, W. Tang, C. T. Nai, L. Li, J. Zheng, L. Gao, Y. Zheng, H. S. Shin, H. Y. Jeong, and K. P. Loh, Adv. Mater. 27, 6722 (2015).

    Article  Google Scholar 

  13. M. Hafeez, L. Gan, H. Li, Y. Ma, and T. Zhai, Adv. Mater. 28, 8296 (2016).

    Article  Google Scholar 

  14. P. Miró, M. Audiffred, and T. Heine, Chem. Soc. Rev. 43, 6537 (2014).

    Article  Google Scholar 

  15. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Nat. Nanotech. 5, 722 (2010), arXiv: 1005.4917.

    ADS  Article  Google Scholar 

  16. B. Radisavljevic, M. B. Whitwick, and A. Kis, ACS Nano 5, 9934 (2011).

    Article  Google Scholar 

  17. Q. Peng, J. Crean, A. K. Dearden, C. Huang, X. Wen, S. P. A. Bordas, and S. De, Mod. Phys. Lett. B 27, 1330017 (2013).

    ADS  Article  Google Scholar 

  18. A. Pakdel, Y. Bando, and D. Golberg, Chem. Soc. Rev. 43, 934 (2014).

    Article  Google Scholar 

  19. H. Şahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R. T. Senger, and S. Ciraci, Phys. Rev. B 80, 155453 (2009), arXiv: 0907.4350.

    ADS  Article  Google Scholar 

  20. K. A. N. Duerloo, Y. Li, and E. J. Reed, Nat. Commun. 5, 4214 (2014).

    ADS  Article  Google Scholar 

  21. Z. P. Xu, and Q. S. Zheng, Sci. China-Phys. Mech. Astron. 61, 074601 (2018).

    ADS  Article  Google Scholar 

  22. W. Yang, H. T. Wang, T. F. Li, and S. X. Qu, Sci. China-Phys. Mech. Astron. 62, 14601 (2019).

    ADS  Article  Google Scholar 

  23. K. N. Kudin, G. E. Scuseria, and B. I. Yakobson, Phys. Rev. B 64, 235406 (2001).

    ADS  Article  Google Scholar 

  24. S. Kitipornchai, X. Q. He, and K. M. Liew, Phys. Rev. B 72, 075443 (2005).

    ADS  Article  Google Scholar 

  25. J. Peng, J. Wu, K. C. Hwang, J. Song, and Y. Huang, J. Mech. Phys. Solids 56, 2213 (2008).

    ADS  MathSciNet  Article  Google Scholar 

  26. M. M. Shokrieh, and R. Rafiee, Mater. Des. 31, 790 (2010).

    Article  Google Scholar 

  27. Y. Liu, Z. Xu, and Q. Zheng, J. Mech. Phys. Solids 59, 1613 (2011).

    ADS  MathSciNet  Article  Google Scholar 

  28. A. Genoese, A. Genoese, N. L. Rizzi, and G. Salerno, Compos. Part BEng. 115, 316 (2017).

    Article  Google Scholar 

  29. Z. Q. Wang, and Y. P. Zhao, Sci. China-Phys. Mech. Astron. 54, 948 (2011).

    ADS  Article  Google Scholar 

  30. Y. Huang, J. Wu, and K. C. Hwang, Phys. Rev. B 74, 245413 (2006).

    ADS  Article  Google Scholar 

  31. O. A. Shenderova, V. V. Zhirnov, and D. W. Brenner, Critical Rev. Solid State Mater. Sci. 27, 227 (2002).

    ADS  Article  Google Scholar 

  32. D. B. Zhang, E. Akatyeva, and T. Dumitric., Phys. Rev. Lett. 106, 255503 (2011).

    ADS  Article  Google Scholar 

  33. E. Gao, and Z. Xu, J. Appl. Mech 82, 121012 (2015).

    ADS  Article  Google Scholar 

  34. J. Chen, B. Wang, and Y. Hu, J. Mech. Phys. Solids 107, 451 (2017), arXiv: 1610.01467.

    ADS  MathSciNet  Article  Google Scholar 

  35. M. Born, Math. Proc. Camb. Phil. Soc. 36, 160 (1940).

    ADS  Article  Google Scholar 

  36. Y. C. Fung, Foundations of Solid Mechanics (Prentice Hall, Englewood, 1965), pp. 341–359.

    Google Scholar 

  37. M. S. Daw, and M. I. Baskes, Phys. Rev. B 29, 6443 (1984).

    ADS  Article  Google Scholar 

  38. F. H. Stillinger, and T. A. Weber, Phys. Rev. B 31, 5262 (1985).

    ADS  Article  Google Scholar 

  39. J. A. Harrison, M. Fallet, K. E. Ryan, B. L. Mooney, M. T. Knippenberg, and J. D. Schall, Model. Simul. Mater. Sci. Eng. 23, 074003 (2015).

    ADS  Article  Google Scholar 

  40. J. Jiang, and Y. Zhou, Handbook of Stillinger-Weber Potential Parameters for Two-Dimensional Atomic Crystals (IntechOpen, Londo, 2017).

    Book  Google Scholar 

  41. G. C. Abell, Phys. Rev. B 31, 6184 (1985).

    ADS  Article  Google Scholar 

  42. J. Tersoff, Phys. Rev. Lett. 56, 632 (1986).

    ADS  Article  Google Scholar 

  43. D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, J. Phys.-Condens. Matter 14, 783 (2002).

    ADS  Article  Google Scholar 

  44. M. Born, and K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, Oxford, 1959), pp. 120–139.

    Google Scholar 

  45. M. Arroyo, and T. Belytschko, J. Mech. Phys. Solids 50, 1941 (2002).

    ADS  MathSciNet  Article  Google Scholar 

  46. J. Wu, K. C. Hwang, and Y. Huang, J. Mech. Phys. Solids 56, 279 (2008).

    ADS  MathSciNet  Article  Google Scholar 

  47. C. Sevik, A. Kinaci, J. B. Haskins, and T. Çağın, Phys. Rev. B 84, 085409 (2011).

    ADS  Article  Google Scholar 

  48. P. Erhart, and K. Albe, Phys. Rev. B 71, 035211 (2005).

    ADS  Article  Google Scholar 

  49. J. Nord, K. Albe, P. Erhart, and K. Nordlund, J. Phys.-Condens. Matter 15, 5649 (2003).

    ADS  Article  Google Scholar 

  50. E. Ventsel, and T. Krauthammer, Thin Plates and Shells (Marcel Dekker, New York, 2001), pp. 17–23.

    Book  Google Scholar 

  51. H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, and P. D. Ye, ACS Nano 8, 4033 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Wang, B. Existence criteria and validity of plate models for graphene-like materials. Sci. China Phys. Mech. Astron. 62, 954611 (2019). https://doi.org/10.1007/s11433-018-9332-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9332-2

Keywords

  • grapheme-like material
  • existence criterion
  • plate idealization