Skip to main content
Log in

Qubit-assisted squeezing of mirror motion in a dissipative cavity optomechanical system

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In this study, we investigate a hybrid system consisting of an atomic ensemble trapped inside a dissipative optomechanical cavity assisted with perturbative oscillator-qubit coupling. Such a system is generally very suitable for generating stationary squeezing of the mirror motion in the long-time limit under the unresolved sideband regime. Based on the master equation and covariance matrix approaches, we discuss in detail the respective squeezing effects. We also determine that in both approaches, simplifying the system dynamics with adiabatic elimination of the highly dissipative cavity mode is very effective. In the master equation approach, we find that the squeezing is a resulting effect of the cooling process and is robust against thermal fluctuations of the mechanical mode. In the covariance matrix approach, we can approximately obtain the analytical result of the steady-state mechanical position variance from the reduced dynamical equation. Finally, we compare the two approaches and observe that they are completely equivalent for the stationary dynamics. Moreover, the scheme may be useful for possible ultraprecise quantum measurement that involves mechanical squeezing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014), arXiv: 1303.0733.

    Article  ADS  Google Scholar 

  2. I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, Phys. Rev. Lett. 99, 093901 (2007).

    Article  ADS  Google Scholar 

  3. F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Phys. Rev. Lett. 99, 093902 (2007).

    Article  ADS  Google Scholar 

  4. Y. Guo, K. Li, W. Nie, and Y. Li, Phys. Rev. A 90, 053841 (2014), arXiv: 1407.5202.

    Article  ADS  Google Scholar 

  5. Y. C. Liu, Y. F. Xiao, X. Luan, and C. W. Wong, Sci. China-Phys. Mech. Astron. 58, 050305 (2015), arXiv: 1504.04497.

    Google Scholar 

  6. D. Y.Wang, C. H. Bai, S. Liu, S. Zhang, and H. F.Wang, Phys. Rev. A 98, 023816 (2018), arXiv: 1811.05645.

    Article  ADS  Google Scholar 

  7. R. X. Chen, L. T. Shen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, Phys. Rev. A 89, 023843 (2014).

    Article  ADS  Google Scholar 

  8. Y. Yan, W. J. Gu, and G. X. Li, Sci. China-Phys. Mech. Astron. 58, 050306 (2015).

    Google Scholar 

  9. Z. R. Zhong, X. Wang, and W. Qin, Front. Phys. 13, 130319 (2018).

    Article  Google Scholar 

  10. W. Xiong, D. Y. Jin, Y. Qiu, C. H. Lam, and J. Q. You, Phys. Rev. A 93, 023844 (2016), arXiv: 1511.04518.

    Article  ADS  Google Scholar 

  11. C. Jiang, Z. Y. Zhai, Y. S. Cui, and G. B. Chen, Sci. China-Phys. Mech. Astron. 60, 010311 (2017).

    Article  ADS  Google Scholar 

  12. C. Kong, H. Xiong, and Y. Wu, Phys. Rev. A 95, 033820 (2017).

    Article  ADS  Google Scholar 

  13. X. R. Xiong, Y. P. Gao, X. F. Liu, C. Cao, T. J. Wang, and C. Wang, Sci. China-Phys. Mech. Astron. 61, 090322 (2018).

    Article  Google Scholar 

  14. Q. Song, K. Y. Zhang, Y. Dong, and W. P. Zhang, Sci. China-Phys. Mech. Astron. 61, 050311 (2018).

    Article  ADS  Google Scholar 

  15. K. Li, S. Davuluri, and Y. Li, Sci. China-Phys. Mech. Astron. 61, 090311 (2018).

    Article  Google Scholar 

  16. M. Aspelmeyer, P. Meystre, and K. Schwab, Phys. Today 65, 29 (2012).

    Article  Google Scholar 

  17. W. H. Zurek, Phys. Today 44, 36 (1991).

    Article  Google Scholar 

  18. C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, Rev. Mod. Phys. 52, 341 (1980).

    Article  ADS  Google Scholar 

  19. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, Science 256, 325 (1992).

    Article  ADS  Google Scholar 

  20. B. C. Barish, and R. Weiss, Phys. Today 52, 44 (1999).

    Article  Google Scholar 

  21. G. S. Agarwal, and S. A. Kumar, Phys. Rev. Lett. 67, 3665 (1991).

    Article  ADS  Google Scholar 

  22. A. Mari, and J. Eisert, Phys. Rev. Lett. 103, 213603 (2009), arXiv: 0911.0433.

    Article  ADS  Google Scholar 

  23. J. Q. Liao, and C. K. Law, Phys. Rev. A 83, 033820 (2011), arXiv: 1101.5655.

    Article  ADS  Google Scholar 

  24. W. Gu, and G. Li, Opt. Express 21, 20423 (2013).

    Article  ADS  Google Scholar 

  25. C. G. Liao, H. Xie, X. Shang, Z. H. Chen, and X. M. Lin, Opt. Express 26, 13783 (2018), arXiv: 1803.02004.

    Article  ADS  Google Scholar 

  26. A. Kronwald, F. Marquardt, and A. A. Clerk, Phys. Rev. A 88, 063833 (2013), arXiv: 1307.5309.

    Article  ADS  Google Scholar 

  27. K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, and P. Zoller, Phys. Rev. A 79, 063819 (2009), arXiv: 0904.1306.

    Article  ADS  Google Scholar 

  28. S. Huang, and G. S. Agarwal, Phys. Rev. A 82, 033811 (2010), arXiv: 1007.1620.

    Article  ADS  Google Scholar 

  29. G. S. Agarwal, and S. Huang, Phys. Rev. A 93, 043844 (2016), arXiv: 1602.02214.

    Article  ADS  Google Scholar 

  30. X. Y. Lű, J. Q. Liao, L. Tian, and F. Nori, Phys. Rev. A 91, 013834 (2015), arXiv: 1403.0049.

    Article  ADS  Google Scholar 

  31. A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, Phys. Rev. A 82, 021806 (2010), arXiv: 1004.2510.

    Article  ADS  Google Scholar 

  32. M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. D. Giuseppe, and D. Vitali, Phys. Rev. A 89, 023849 (2014), arXiv: 1309.5485.

    Article  ADS  Google Scholar 

  33. A. Dalafi, M. H. Naderi, and A. Motazedifard, Phys. Rev. A 97, 043619 (2018), arXiv: 1802.10394.

    Article  ADS  Google Scholar 

  34. C. S. Hu, Z. B. Yang, H. Wu, Y. Li, and S. B. Zheng, Phys. Rev. A 98, 023807 (2018), arXiv: 1803.05147.

    Article  ADS  Google Scholar 

  35. W. Y. Huo, and G. L. Long, Appl. Phys. Lett. 92, 133102 (2008).

    Article  ADS  Google Scholar 

  36. J. M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel, and M. A. Sillanpää, Phys. Rev. Lett. 115, 243601 (2015), arXiv: 1507.04209.

    Article  ADS  Google Scholar 

  37. M. O. Scully, and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, England, 2001).

    MATH  Google Scholar 

  38. S. Chakraborty, and A. K. Sarma, Ann. Phys. 392, 39 (2018).

    Article  ADS  Google Scholar 

  39. H. Wang, X. Gu, Y. Liu, A. Miranowicz, and F. Nori, Phys. Rev. A 92, 033806 (2015), arXiv: 1506.03858.

    Article  ADS  Google Scholar 

  40. H. Wang, X. Gu, Y. Liu, A. Miranowicz, and F. Nori, Phys. Rev. A 90, 023817 (2014), arXiv: 1402.2764.

    Article  ADS  Google Scholar 

  41. M. D. LaHaye, J. Suh, P. M. Echternach, K. C. Schwab, and M. L. Roukes, Nature 459, 960 (2009).

    Article  ADS  Google Scholar 

  42. X. Wang, A. Miranowicz, H. R. Li, F. L. Li, and F. Nori, Phys. Rev. A 98, 023821 (2018), arXiv: 1803.06513.

    Article  ADS  Google Scholar 

  43. D. Vitali, S. Gigan, A. Ferreira, H. R. B¨ohm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, Phys. Rev. Lett. 98, 030405 (2007).

    Article  ADS  Google Scholar 

  44. X. Chen, Y. C. Liu, P. Peng, Y. Zhi, and Y. F. Xiao, Phys. Rev. A 92, 033841 (2015).

    Article  ADS  Google Scholar 

  45. V. Giovannetti, and D. Vitali, Phys. Rev. A 63, 023812 (2001).

    Article  ADS  Google Scholar 

  46. F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito, and K. Semba, Nat. Phys. 13, 44 (2016), arXiv: 1602.00415.

    Article  Google Scholar 

  47. T. Li, and Z. Q. Yin, Sci. Bull. 61, 163 (2016).

    Article  Google Scholar 

  48. S. Etaki, M. Poot, I. Mahboob, K. Onomitsu, H. Yamaguchi, and H. S. J. van der Zant, Nat. Phys. 4, 785 (2008).

    Article  Google Scholar 

  49. M. Abdi, P. Degenfeld-Schonburg, M. Sameti, C. Navarrete-Benlloch, and M. J. Hartmann, Phys. Rev. Lett. 116, 233604 (2016), arXiv: 1602.07922.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shou Zhang or Hong-Fu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, CH., Wang, DY., Zhang, S. et al. Qubit-assisted squeezing of mirror motion in a dissipative cavity optomechanical system. Sci. China Phys. Mech. Astron. 62, 970311 (2019). https://doi.org/10.1007/s11433-018-9327-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9327-8

Keywords

Navigation