Skip to main content

Superconductivity, electronic phase diagram, and pressure effect in Sr1−xPrxFBiS2

Abstract

Based on a combination of X-ray diffraction, electrical transports, magnetic susceptibility, specific heat, and pressure-effect measurements, we report the results of experiments on a series of BiS2-based Sr1−xPrxFBiS2 superconductors with the maximum Tc of 2.7 K for x=0.5 and at ambient pressure. Superconductivity appears only for 0.4≤x≤0.7 whereas the normal-state resistivity shows the semiconducting-like behaviors. The magnetic susceptibility χ(T) displays the low superconducting shielding volume fractions and C(T) shows no distinguishable anomaly near Tc, which suggests a filamentary superconductivity in the Pr-doped polycrystalline samples. By varying doping concentrations, an electronic phase diagram is established. Upon applying pressure on the optimally doped Sr0.5Pr0.5FBiS2 system, Tc is abruptly enhanced, reaches 8.5 K at the critical pressure of Pc=1.5 GPa, and increases slightly to 9.7 K at 2.5 GPa. Accompanied by the enhancement of superconductivity from the low- to the high-Tc phases, the normal state undergoes a semiconductor-to-metal transition when under pressure. This scenario may be linked to enhanced overlap of the Bi-6p and S-p orbitals, which contributes to the enhanced superconductivity above Pc. The pressuretemperature phase diagram for Sr0.5Pr0.5FBiS2 is also presented.

This is a preview of subscription content, access via your institution.

References

  1. Y. Mizuguchi, H. Fujihisa, Y. Gotoh, K. Suzuki, H. Usui, K. Kuroki, S. Demura, Y. Takano, H. Izawa, and O. Miura, Phys. Rev. B 86, 220510(R) (2012), arXiv: 1207.3145.

    ADS  Article  Google Scholar 

  2. Y. Mizuguchi, S. Demura, K. Deguchi, Y. Takano, H. Fujihisa, Y. Gotoh, H. Izawa, and O. Miura, J. Phys. Soc. Jpn. 81, 114725 (2012), arXiv: 1207.3558.

    ADS  Article  Google Scholar 

  3. S. Demura, Y. Mizuguchi, K. Deguchi, H. Okazaki, H. Hara, T. Watanabe, S. James Denholme, M. Fujioka, T. Ozaki, H. Fujihisa, Y. Gotoh, O. Miura, T. Yamaguchi, H. Takeya, and Y. Takano, J. Phys. Soc. Jpn. 82, 033708 (2013).

    ADS  Article  Google Scholar 

  4. V. P. S. Awana, A. Kumar, R. Jha, S. Kumar Singh, A. Pal, A. Shruti, J. Saha, and S. Patnaik, Solid State Commun. 157, 21 (2013), arXiv: 1207.6845.

    ADS  Article  Google Scholar 

  5. J. Xing, S. Li, X. Ding, H. Yang, and H. H. Wen, Phys. Rev. B 86, 214518 (2012), arXiv: 1208.5000.

    ADS  Article  Google Scholar 

  6. R. Jha, A. Kumar, S. K. Singh, and V. P. S. Awana, J. Supercond. Nov. Magn. 26, 499 (2013).

    Article  Google Scholar 

  7. X. Lin, X. Ni, B. Chen, X. Xu, X. Yang, J. Dai, Y. Li, X. Yang, Y. Luo, Q. Tao, G. Cao, and Z. Xu, Phys. Rev. B 87, 020504 (2013), arXiv: 1301.2380.

    ADS  Article  Google Scholar 

  8. L. Li, Y. Li, Y. Jin, H. Huang, B. Chen, X. Xu, J. Dai, L. Zhang, X. Yang, H. Zhai, G. Cao, and Z. Xu, Phys. Rev. B 91, 014508 (2015), arXiv: 1407.3711.

    ADS  Article  Google Scholar 

  9. H. Lei, K. Wang, M. Abeykoon, E. S. Bozin, and C. Petrovic, Inorg. Chem. 52, 10685 (2013).

    Article  Google Scholar 

  10. B. Li, Z. W. Xing, and G. Q. Huang, Europhys. Lett. 101, 47002 (2013), arXiv: 1210.1743.

    ADS  Article  Google Scholar 

  11. Y. Li, X. Lin, L. Li, N. Zhou, X. Xu, C. Cao, J. Dai, L. Zhang, Y. Luo, W. Jiao, Q. Tao, G. Cao, and Z. Xu, Supercond. Sci. Technol. 27, 035009 (2014), arXiv: 1310.1695.

    ADS  Article  Google Scholar 

  12. C. T. Wolowiec, B. D. White, I. Jeon, D. Yazici, K. Huang, and M. B. Maple, J. Phys.-Condens. Matter 25, 422201 (2013), arXiv: 1308.1072.

    ADS  Article  Google Scholar 

  13. D. Yazici, K. Huang, B. D. White, I. Jeon, V. W. Burnett, A. J. Friedman, I. K. Lum, M. Nallaiyan, S. Spagna, and M. B. Maple, Phys. Rev. B 87, 174512 (2013), arXiv: 1303.6216.

    ADS  Article  Google Scholar 

  14. C. T. Wolowiec, D. Yazici, B. D. White, K. Huang, and M. B. Maple, Phys. Rev. B 88, 064503 (2013), arXiv: 1307.4157.

    ADS  Article  Google Scholar 

  15. R. Jha, H. Kishan, and V. P. S. Awana, Solid State Commun. 194, 6 (2014), arXiv: 1405.5976.

    ADS  Article  Google Scholar 

  16. Y. Luo, H. F. Zhai, P. Zhang, Z. A. Xu, G. H. Cao, and J. D. Thompson, Phys. Rev. B 90, 220510 (2014), arXiv: 1412.5446.

    ADS  Article  Google Scholar 

  17. T. Tomita, M. Ebata, H. Soeda, H. Takahashi, H. Fujihisa, Y. Gotoh, Y. Mizuguchi, H. Izawa, O. Miura, S. Demura, K. Deguchi, and Y. Takano, J. Phys. Soc. Jpn. 83, 063704 (2014).

    ADS  Article  Google Scholar 

  18. B. Chen, C. Uher, L. Iordanidis, and M. G. Kanatzidis, Chem. Mater. 9, 1655 (1997).

    Article  Google Scholar 

  19. R. Jha, B. Tiwari, and V. P. S. Awana, J. Appl. Phys. 117, 013901 (2015), arXiv: 1407.3105.

    ADS  Article  Google Scholar 

  20. Y. Mizuguchi, T. Hiroi, J. Kajitani, H. Takatsu, H. Kadowaki, and O. Miura, J. Phys. Soc. Jpn. 83, 053704 (2014), arXiv: 1402.5189.

    ADS  Article  Google Scholar 

  21. K. Nagasaka, A. Nishida, R. Jha, J. Kajitani, O. Miura, R. Higashinaka, T. D. Matsuda, Y. Aoki, A. Miura, C. Moriyoshi, Y. Kuroiwa, H. Usui, K. Kuroki, and Y. Mizuguchi, J. Phys. Soc. Jpn. 86, 074701 (2017), arXiv: 1702.07485.

    ADS  Article  Google Scholar 

  22. Y. Mizuguchi, A. Miura, J. Kajitani, T. Hiroi, O. Miura, K. Tadanaga, N. Kumada, E. Magome, C. Moriyoshi, and Y. Kuroiwa, Sci. Rep. 5, 14968 (2015), arXiv: 1504.01208.

    ADS  Article  Google Scholar 

  23. H. F. Zhai, Z. T. Tang, H. Jiang, K. Xu, K. Zhang, P. Zhang, J. K. Bao, Y. L. Sun, W. H. Jiao, I. Nowik, I. Felner, Y. K. Li, X. F. Xu, Q. Tao, C. M. Feng, Z. A. Xu, and G. H. Cao, Phys. Rev. B 90, 064518 (2014), arXiv: 1407.7132.

    ADS  Article  Google Scholar 

  24. Y. Li, Y. Luo, L. Li, B. Chen, X. Xu, J. Dai, X. Yang, L. Zhang, G. Cao, and Z. Xu, J. Phys.-Condens. Matter 26, 425701 (2014).

    ADS  Article  Google Scholar 

  25. C. Y. Guo, Y. Chen, M. Smidman, S. A. Chen, W. B. Jiang, H. F. Zhai, Y. F. Wang, G. H. Cao, J. M. Chen, X. Lu, and H. Q. Yuan, Phys. Rev. B 91, 214512 (2015), arXiv: 1505.04704.

    ADS  Article  Google Scholar 

  26. J. Liu, S. Li, Y. Li, X. Zhu, and H. H. Wen, Phys. Rev. B 90, 094507 (2014), arXiv: 1407.5904.

    ADS  Article  Google Scholar 

  27. H. Sakai, D. Kotajima, K. Saito, H. Wadati, Y. Wakisaka, M. Mizumaki, K. Nitta, Y. Tokura, and S. Ishiwata, J. Phys. Soc. Jpn. 83, 014709 (2014), arXiv: 1311.5117.

    ADS  Article  Google Scholar 

  28. C. Morice, E. Artacho, S. E. Dutton, H. J. Kim, and S. S. Saxena, J. Phys.-Condens. Matter 28, 345504 (2016), arXiv: 1312.2615.

    Article  Google Scholar 

  29. S. Li, H. Yang, D. L. Fang, Z. Y. Wang, J. Tao, X. X. Ding, and H. H. Wen, Sci. China-Phys. Mech. Astron. 56, 2019 (2013), arXiv: 1304.3354.

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to JianHui Dai or YuKe Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

You, W., Li, L., Yang, H. et al. Superconductivity, electronic phase diagram, and pressure effect in Sr1−xPrxFBiS2. Sci. China Phys. Mech. Astron. 62, 957411 (2019). https://doi.org/10.1007/s11433-018-9326-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9326-4

Keywords

  • BiS2-based superconductors
  • superconductivity
  • phase diagram
  • pressure effect