Skip to main content
Log in

Superconductivity, electronic phase diagram, and pressure effect in Sr1−xPrxFBiS2

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Based on a combination of X-ray diffraction, electrical transports, magnetic susceptibility, specific heat, and pressure-effect measurements, we report the results of experiments on a series of BiS2-based Sr1−xPrxFBiS2 superconductors with the maximum Tc of 2.7 K for x=0.5 and at ambient pressure. Superconductivity appears only for 0.4≤x≤0.7 whereas the normal-state resistivity shows the semiconducting-like behaviors. The magnetic susceptibility χ(T) displays the low superconducting shielding volume fractions and C(T) shows no distinguishable anomaly near Tc, which suggests a filamentary superconductivity in the Pr-doped polycrystalline samples. By varying doping concentrations, an electronic phase diagram is established. Upon applying pressure on the optimally doped Sr0.5Pr0.5FBiS2 system, Tc is abruptly enhanced, reaches 8.5 K at the critical pressure of Pc=1.5 GPa, and increases slightly to 9.7 K at 2.5 GPa. Accompanied by the enhancement of superconductivity from the low- to the high-Tc phases, the normal state undergoes a semiconductor-to-metal transition when under pressure. This scenario may be linked to enhanced overlap of the Bi-6p and S-p orbitals, which contributes to the enhanced superconductivity above Pc. The pressuretemperature phase diagram for Sr0.5Pr0.5FBiS2 is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Mizuguchi, H. Fujihisa, Y. Gotoh, K. Suzuki, H. Usui, K. Kuroki, S. Demura, Y. Takano, H. Izawa, and O. Miura, Phys. Rev. B 86, 220510(R) (2012), arXiv: 1207.3145.

    Article  ADS  Google Scholar 

  2. Y. Mizuguchi, S. Demura, K. Deguchi, Y. Takano, H. Fujihisa, Y. Gotoh, H. Izawa, and O. Miura, J. Phys. Soc. Jpn. 81, 114725 (2012), arXiv: 1207.3558.

    Article  ADS  Google Scholar 

  3. S. Demura, Y. Mizuguchi, K. Deguchi, H. Okazaki, H. Hara, T. Watanabe, S. James Denholme, M. Fujioka, T. Ozaki, H. Fujihisa, Y. Gotoh, O. Miura, T. Yamaguchi, H. Takeya, and Y. Takano, J. Phys. Soc. Jpn. 82, 033708 (2013).

    Article  ADS  Google Scholar 

  4. V. P. S. Awana, A. Kumar, R. Jha, S. Kumar Singh, A. Pal, A. Shruti, J. Saha, and S. Patnaik, Solid State Commun. 157, 21 (2013), arXiv: 1207.6845.

    Article  ADS  Google Scholar 

  5. J. Xing, S. Li, X. Ding, H. Yang, and H. H. Wen, Phys. Rev. B 86, 214518 (2012), arXiv: 1208.5000.

    Article  ADS  Google Scholar 

  6. R. Jha, A. Kumar, S. K. Singh, and V. P. S. Awana, J. Supercond. Nov. Magn. 26, 499 (2013).

    Article  Google Scholar 

  7. X. Lin, X. Ni, B. Chen, X. Xu, X. Yang, J. Dai, Y. Li, X. Yang, Y. Luo, Q. Tao, G. Cao, and Z. Xu, Phys. Rev. B 87, 020504 (2013), arXiv: 1301.2380.

    Article  ADS  Google Scholar 

  8. L. Li, Y. Li, Y. Jin, H. Huang, B. Chen, X. Xu, J. Dai, L. Zhang, X. Yang, H. Zhai, G. Cao, and Z. Xu, Phys. Rev. B 91, 014508 (2015), arXiv: 1407.3711.

    Article  ADS  Google Scholar 

  9. H. Lei, K. Wang, M. Abeykoon, E. S. Bozin, and C. Petrovic, Inorg. Chem. 52, 10685 (2013).

    Article  Google Scholar 

  10. B. Li, Z. W. Xing, and G. Q. Huang, Europhys. Lett. 101, 47002 (2013), arXiv: 1210.1743.

    Article  ADS  Google Scholar 

  11. Y. Li, X. Lin, L. Li, N. Zhou, X. Xu, C. Cao, J. Dai, L. Zhang, Y. Luo, W. Jiao, Q. Tao, G. Cao, and Z. Xu, Supercond. Sci. Technol. 27, 035009 (2014), arXiv: 1310.1695.

    Article  ADS  Google Scholar 

  12. C. T. Wolowiec, B. D. White, I. Jeon, D. Yazici, K. Huang, and M. B. Maple, J. Phys.-Condens. Matter 25, 422201 (2013), arXiv: 1308.1072.

    Article  ADS  Google Scholar 

  13. D. Yazici, K. Huang, B. D. White, I. Jeon, V. W. Burnett, A. J. Friedman, I. K. Lum, M. Nallaiyan, S. Spagna, and M. B. Maple, Phys. Rev. B 87, 174512 (2013), arXiv: 1303.6216.

    Article  ADS  Google Scholar 

  14. C. T. Wolowiec, D. Yazici, B. D. White, K. Huang, and M. B. Maple, Phys. Rev. B 88, 064503 (2013), arXiv: 1307.4157.

    Article  ADS  Google Scholar 

  15. R. Jha, H. Kishan, and V. P. S. Awana, Solid State Commun. 194, 6 (2014), arXiv: 1405.5976.

    Article  ADS  Google Scholar 

  16. Y. Luo, H. F. Zhai, P. Zhang, Z. A. Xu, G. H. Cao, and J. D. Thompson, Phys. Rev. B 90, 220510 (2014), arXiv: 1412.5446.

    Article  ADS  Google Scholar 

  17. T. Tomita, M. Ebata, H. Soeda, H. Takahashi, H. Fujihisa, Y. Gotoh, Y. Mizuguchi, H. Izawa, O. Miura, S. Demura, K. Deguchi, and Y. Takano, J. Phys. Soc. Jpn. 83, 063704 (2014).

    Article  ADS  Google Scholar 

  18. B. Chen, C. Uher, L. Iordanidis, and M. G. Kanatzidis, Chem. Mater. 9, 1655 (1997).

    Article  Google Scholar 

  19. R. Jha, B. Tiwari, and V. P. S. Awana, J. Appl. Phys. 117, 013901 (2015), arXiv: 1407.3105.

    Article  ADS  Google Scholar 

  20. Y. Mizuguchi, T. Hiroi, J. Kajitani, H. Takatsu, H. Kadowaki, and O. Miura, J. Phys. Soc. Jpn. 83, 053704 (2014), arXiv: 1402.5189.

    Article  ADS  Google Scholar 

  21. K. Nagasaka, A. Nishida, R. Jha, J. Kajitani, O. Miura, R. Higashinaka, T. D. Matsuda, Y. Aoki, A. Miura, C. Moriyoshi, Y. Kuroiwa, H. Usui, K. Kuroki, and Y. Mizuguchi, J. Phys. Soc. Jpn. 86, 074701 (2017), arXiv: 1702.07485.

    Article  ADS  Google Scholar 

  22. Y. Mizuguchi, A. Miura, J. Kajitani, T. Hiroi, O. Miura, K. Tadanaga, N. Kumada, E. Magome, C. Moriyoshi, and Y. Kuroiwa, Sci. Rep. 5, 14968 (2015), arXiv: 1504.01208.

    Article  ADS  Google Scholar 

  23. H. F. Zhai, Z. T. Tang, H. Jiang, K. Xu, K. Zhang, P. Zhang, J. K. Bao, Y. L. Sun, W. H. Jiao, I. Nowik, I. Felner, Y. K. Li, X. F. Xu, Q. Tao, C. M. Feng, Z. A. Xu, and G. H. Cao, Phys. Rev. B 90, 064518 (2014), arXiv: 1407.7132.

    Article  ADS  Google Scholar 

  24. Y. Li, Y. Luo, L. Li, B. Chen, X. Xu, J. Dai, X. Yang, L. Zhang, G. Cao, and Z. Xu, J. Phys.-Condens. Matter 26, 425701 (2014).

    Article  ADS  Google Scholar 

  25. C. Y. Guo, Y. Chen, M. Smidman, S. A. Chen, W. B. Jiang, H. F. Zhai, Y. F. Wang, G. H. Cao, J. M. Chen, X. Lu, and H. Q. Yuan, Phys. Rev. B 91, 214512 (2015), arXiv: 1505.04704.

    Article  ADS  Google Scholar 

  26. J. Liu, S. Li, Y. Li, X. Zhu, and H. H. Wen, Phys. Rev. B 90, 094507 (2014), arXiv: 1407.5904.

    Article  ADS  Google Scholar 

  27. H. Sakai, D. Kotajima, K. Saito, H. Wadati, Y. Wakisaka, M. Mizumaki, K. Nitta, Y. Tokura, and S. Ishiwata, J. Phys. Soc. Jpn. 83, 014709 (2014), arXiv: 1311.5117.

    Article  ADS  Google Scholar 

  28. C. Morice, E. Artacho, S. E. Dutton, H. J. Kim, and S. S. Saxena, J. Phys.-Condens. Matter 28, 345504 (2016), arXiv: 1312.2615.

    Article  Google Scholar 

  29. S. Li, H. Yang, D. L. Fang, Z. Y. Wang, J. Tao, X. X. Ding, and H. H. Wen, Sci. China-Phys. Mech. Astron. 56, 2019 (2013), arXiv: 1304.3354.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to JianHui Dai or YuKe Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, W., Li, L., Yang, H. et al. Superconductivity, electronic phase diagram, and pressure effect in Sr1−xPrxFBiS2. Sci. China Phys. Mech. Astron. 62, 957411 (2019). https://doi.org/10.1007/s11433-018-9326-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9326-4

Keywords

Navigation