Skip to main content
Log in

Holographic heat engine in Horndeski model with the k-essence sector

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

This study aims to analyze the extended thermodynamical properties of the charged black hole in Horndeski theory with the k-essence sector. Herein, we define a holographic heat engine using the anti de Sitter black hole. We then estimate the engine efficiency in high-temperature limit and compare the result with the exact result. With the given specified parameters in a rectangular engine, high order coupling suppresses the engine efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999); Adv. Theor. Math. Phys. 2, 231 (1998).

    Article  Google Scholar 

  2. S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett. B 428, 105 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  3. E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  4. D. Kastor, S. Ray, and J. Traschen, Class. Quantum Grav. 26, 195011 (2009), arXiv: 0904.2765.

    Article  ADS  Google Scholar 

  5. B. P. Dolan, Class. Quantum Grav. 28, 125020 (2011), arXiv: 1008.5023.

    Article  ADS  Google Scholar 

  6. M. Cvetič, G. W. Gibbons, D. Kubizňák, and C. N. Pope, Phys. Rev. D 84, 024037 (2011), arXiv: 1012.2888.

    Article  ADS  Google Scholar 

  7. B. P. Dolan, Class. Quantum Grav. 28, 235017 (2011), arXiv: 1106.6260.

    Article  ADS  Google Scholar 

  8. N. Altamirano, D. Kubizňák, R. Mann, and Z. Sherkatghanad, Galaxies 2, 89 (2014), arXiv: 1401.2586.

    Article  ADS  Google Scholar 

  9. R. A. Hennigar, R. B. Mann, and D. Kubizňák, Phys. Rev. Lett. 115, 031101 (2015).

    Article  ADS  Google Scholar 

  10. D. Kubizňák, R. B. Mann, and M. Teo, Class. Quantum Grav. 34, 063001 (2017), arXiv: 1608.06147.

    Article  ADS  Google Scholar 

  11. C. V. Johnson, Class. Quantum Grav. 31, 205002 (2014), arXiv: 1404.5982.

    Article  ADS  Google Scholar 

  12. C. V. Johnson, Class. Quantum Grav. 33, 215009 (2016), arXiv: 1511.08782.

    Article  ADS  Google Scholar 

  13. C. V. Johnson, Class. Quantum Grav. 33, 135001 (2016), arXiv: 1512.01746.

    Article  ADS  Google Scholar 

  14. R. A. Hennigar, F. McCarthy, A. Ballon, and R. B. Mann, Class. Quantum Grav. 34, 175005 (2017), arXiv: 1704.02314.

    Article  ADS  Google Scholar 

  15. C. V. Johnson, Class. Quantum Grav. 35, 045001 (2018), arXiv: 1705.04855.

    Article  ADS  Google Scholar 

  16. J. X. Mo, F. Liang, and G. Q. Li, J. High Energ. Phys. 2017(3), 10 (2017), arXiv: 1701.00883.

    Article  Google Scholar 

  17. E. Caceres, P. H. Nguyen, and J. F. Pedraza, J. High Energ. Phys. 2015(9), 184 (2015), arXiv: 1507.06069.

    Article  Google Scholar 

  18. H. Xu, Y. Sun, and L. Zhao, Int. J. Mod. Phys. D 26, 1750151 (2017).

    Article  ADS  Google Scholar 

  19. H. Liu, and X. H. Meng, Eur. Phys. J. C 77, 556 (2017), arXiv: 1704.04363.

    Article  ADS  Google Scholar 

  20. S. W. Wei, and Y. X. Liu, arXiv: 1605.04629.

  21. J. X. Mo, and S. Q. Lan, Eur. Phys. J. C 78, 666 (2018), arXiv: 1803.02491.

    Article  ADS  Google Scholar 

  22. J. Zhang, Y. Li, and H. Yu, Eur. Phys. J. C 78, 645 (2018), arXiv: 1801.06811.

    Article  ADS  Google Scholar 

  23. B. E. Panah, arXiv: 1805.03014.

  24. C. V. Johnson, and F. Rosso, arXiv: 1806.05170.

  25. R. A. Davison, Phys. Rev. D 88, 086003 (2013), arXiv: 1306.5792.

    Article  ADS  Google Scholar 

  26. J. X. Mo, and G. Q. Li, J. High Energ. Phys. 2018(5), 122 (2018), arXiv: 1707.01235.

    Article  Google Scholar 

  27. S. H. Hendi, B. E. Panah, S. Panahiyan, H. Liu, and X. H. Meng, Phys. Lett. B 781, 40 (2018), arXiv: 1707.02231.

    Article  ADS  Google Scholar 

  28. L. Q. Fang, and X. M. Kuang, Sci. China-Phys. Mech. Astron. 61, 080421 (2018), arXiv: 1710.09054.

    Article  ADS  Google Scholar 

  29. T. Andrade, and B. Withers, J. High Energ. Phys. 2014(5), 101 (2014), arXiv: 1311.5157.

    Article  Google Scholar 

  30. M. Baggioli, and O. Pujolás, Phys. Rev. Lett. 114, 251602 (2015).

    Article  ADS  Google Scholar 

  31. A. Cisterna, M. Hassaine, J. Oliva, and M. Rinaldi, Phys. Rev. D 96, 124033 (2017), arXiv: 1708.07194.

    Article  ADS  MathSciNet  Google Scholar 

  32. L. Heisenberg, arXiv: 1807.01725.

  33. L. Alberte, M. Baggioli, A. Khmelnitsky, and O. Pujolás, J. High Energ. Phys. 2016(2), 114 (2016), arXiv: 1510.09089.

    Article  Google Scholar 

  34. L. Alberte, M. Ammon, M. Baggioli, A. Jiménez, and O. Pujolás, J. High Energ. Phys. 2018(1), 129 (2018), arXiv: 1708.08477.

    Article  Google Scholar 

  35. Y. Bardoux, M. M. Caldarelli, and C. Charmousis, J. High Energ. Phys. 2012(5), 54 (2012), arXiv: 1202.4458.

    Article  Google Scholar 

  36. R. C. Myers, and J. Z. Simon, Phys. Rev. D 38, 2434 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  37. L. F. Abbott, and S. Deser, Nucl. Phys. B 195, 76 (1982).

    Article  ADS  Google Scholar 

  38. M. M. Caldarelli, G. Cognola, and D. Klemm, Class. Quantum Grav. 17, 399 (2000).

    Article  ADS  Google Scholar 

  39. M. Cvetic, and S. S. Gubser, J. High Energy Phys. 1999(04), 024 (1999).

    Article  Google Scholar 

  40. A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers, Phys. Rev. D 60, 064018 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  41. A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers, Phys. Rev. D 60, 104026 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  42. D. Kubizňák, and R. B. Mann, J. High Energ. Phys. 2012(7), 33 (2012), arXiv: 1205.0559.

    Article  ADS  Google Scholar 

  43. C. Johnson, Entropy 18, 120 (2016), arXiv: 1602.02838.

    Article  ADS  Google Scholar 

  44. X. M. Kuang, and J. P. Wu, Phys. Lett. B 770, 117 (2017).

    Article  ADS  Google Scholar 

  45. A. Cisterna, C. Erices, X. M. Kuang, and M. Rinaldi, Phys. Rev. D 97, 124052 (2018), arXiv: 1803.07600.

    Article  ADS  MathSciNet  Google Scholar 

  46. X. M. Kuang, J. P. Wu, and Z. Zhou, arXiv: 1805.07904.

  47. A. Cisterna, and J. Oliva, Class. Quantum Grav. 35, 035012 (2018), arXiv: 1708.02916.

    Article  ADS  Google Scholar 

  48. A. Chakraborty and C. V. Johnson, arXiv: 1612.09272.

  49. F. Rosso, arXiv: 1801.07425.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoMei Kuang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Kuang, X. Holographic heat engine in Horndeski model with the k-essence sector. Sci. China Phys. Mech. Astron. 62, 60411 (2019). https://doi.org/10.1007/s11433-018-9315-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9315-8

Keywords

Navigation