Skip to main content

Factoring larger integers with fewer qubits via quantum annealing with optimized parameters

Abstract

RSA cryptography is based on the difficulty of factoring large integers, which is an NP-hard (and hence intractable) problem for a classical computer. However, Shor’s algorithm shows that its complexity is polynomial for a quantum computer, although technical difficulties mean that practical quantum computers that can tackle integer factorizations of meaningful size are still a long way away. Recently, Jiang et al. proposed a transformation that maps the integer factorization problem onto the quadratic unconstrained binary optimization (QUBO) model. They tested their algorithm on a D-Wave 2000Q quantum annealing machine, raising the record for a quantum factorized integer to 376289 with only 94 qubits. In this study, we optimize the problem Hamiltonian to reduce the number of qubits involved in the final Hamiltonian while maintaining the QUBO coefficients in a reasonable range, enabling the improved algorithm to factorize larger integers with fewer qubits. Tests of our improved algorithm using D-Wave’s hybrid quantum/classical simulator qbsolv confirmed that performance was improved, and we were able to factorize 1005973, a new record for quantum factorized integers, with only 89 qubits. In addition, our improved algorithm can tolerate more errors than the original one. Factoring 1005973 using Shor’s algorithm would require about 41 universal qubits, which current universal quantum computers cannot reach with acceptable accuracy. In theory, the latest IBM Q System OneTM (Jan. 2019) can only factor up to 10-bit integers, while the D-Wave have a thousand-fold advantage on the factoring scale. This shows that quantum annealing machines, such as those by D-Wave, may be close to cracking practical RSA codes, while universal quantum-circuit-based computers may be many years away from attacking RSA.

This is a preview of subscription content, access via your institution.

References

  1. S. S. Wagstaff, Am. Math. Soc. 68, 293 (2013).

    Google Scholar 

  2. A. K. Lenstra, H. W. Lenstra Jr, M. S. Manasse, and J. M. Pollard, in Theory of Computing 1990: Proceedings of the Twenty–Second Annual ACM Symposium on Theory of Computing, edited by H. Ortiz (ACM, New York, 1990), pp. 564–572.

    Google Scholar 

  3. M. A. Nielsen, I. Chuang, and L. K. Grover, Am. J. Phys. 70, 558 (2002).

    ADS  Article  Google Scholar 

  4. S. J. Wei, T. Xin, and G. L. Long, Sci. China–Phys. Mech. Astron. 61, 070311 (2018), arXiv: 1706.08080.

    ADS  Article  Google Scholar 

  5. H. L. Huang, Y. W. Zhao, T. Li, F. G. Li, Y. T. Du, X. Q. Fu, S. Zhang, X. Wang, and W. S. Bao, Front. Phys. 12, 120305 (2017), arXiv: 1612.02886.

    Article  Google Scholar 

  6. T. Xin, S. Huang, S. Lu, K. Li, Z. Luo, Z. Yin, J. Li, D. Lu, G. Long, and B. Zeng, Sci. Bull. 63, 17 (2018).

    Article  Google Scholar 

  7. J. Zhou, B. J. Liu, Z. P. Hong, and Z. Y. Xue, Sci. China–Phys. Mech. Astron. 61, 010312 (2018), arXiv: 1705.08852.

    ADS  Article  Google Scholar 

  8. P. W. Shor, SIAM Rev. 41, 303 (1999).

    ADS  Google Scholar 

  9. L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, Nature 414, 883 (2001).

    ADS  Article  Google Scholar 

  10. E. Martín–López, A. Laing, T. Lawson, R. Alvarez, X. Q. Zhou, and J. L. O’Brien, Nat. Photon 6, 773 (2012), arXiv: 1111.4147.

    ADS  Article  Google Scholar 

  11. J. A. Smolin, G. Smith, and A. Vargo, Nature 499, 163 (2013), arXiv: 1301.7007.

    ADS  Article  Google Scholar 

  12. M. R. Geller, and Z. Zhou, Sci. Rep. 3, 3023 (2013), arXiv: 1304.0128.

    ADS  Article  Google Scholar 

  13. C. Gidney, arXiv: 1706.07884v2

  14. A. Cho, Science 359, 141 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  15. E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda, Science 292, 472 (2001).

    ADS  MathSciNet  Article  Google Scholar 

  16. T. Albash, and D. A. Lidar, Rev. Mod. Phys. 90, 015002 (2018), arXiv: 1611.04471.

    ADS  Article  Google Scholar 

  17. N. Xu, X. Peng, M. Shi, and J. F. Du, arXiv: 65.062310

  18. T. Wang, Z. Zhang, L. Xiang, Z. Gong, J. Wu, and Y. Yin, Sci. China–Phys. Mech. Astron. 61, 047411 (2018), arXiv: 1712.10089.

    ADS  Article  Google Scholar 

  19. W. H. Wang, H. X. Cao, Z. L. Chen, and L. Wang, Sci. China–Phys. Mech. Astron. 61, 070312 (2018).

    Article  Google Scholar 

  20. C. J. C. Burges, Factoring As Optimization, Technical Report (Microsoft Research, 2002).

    Google Scholar 

  21. X. Peng, Z. Liao, N. Xu, G. Qin, X. Zhou, D. Suter, and J. Du, Phys. Rev. Lett. 101, 220405 (2008), arXiv: 0808.1935.

    ADS  Article  Google Scholar 

  22. N. Xu, J. Zhu, D. Lu, X. Zhou, X. Peng, and J. Du, Phys. Rev. Lett. 108, 130501 (2012).

    ADS  Article  Google Scholar 

  23. S. Pal, S. Moitra, V. S. Anjusha, A. Kumar, and T. S. Mahesh, arXiv: 1611.00998

  24. R. Dridi, and H. Alghassi, Sci. Rep. 7, 43048 (2017), arXiv: 1604.05796.

    ADS  Article  Google Scholar 

  25. Z. Yin, and Z. Wei, Sci. Bull. 62, 741 (2017).

    Article  Google Scholar 

  26. T. Xin, B. X. Wang, K. R. Li, X. Y. Kong, S. J. Wei, T. Wang, D. Ruan, and G. L. Long, Chin. Phys. B 27, 020308 (2018).

    ADS  Article  Google Scholar 

  27. I. Hen, arXiv: 1612.06012

  28. H. Li, Y. Liu, and G. L. Long, Sci. China–Phys. Mech. Astron. 60, 080311 (2017), arXiv: 1703.10348.

    ADS  Article  Google Scholar 

  29. B. X. Wang, T. Xin, X. Y. Kong, S. J. Wei, D. Ruan, and G. L. Long, Phys. Rev. A 97, 042345 (2018), arXiv: 1802.01420.

    ADS  Article  Google Scholar 

  30. C. Wang, and H. G. Zhang, Inf. Secur. Commun. Priv. 2, 31 (2012).

    Google Scholar 

  31. C. Wang, Y. J. Wang, and F. Hu, Chin. J. Netw. Inf. Secur. 2, 17 (2016).

    Google Scholar 

  32. Z. K. Li, N. S. Dattani, X. Chen, X. M. Liu, H. Y. Wang, R. Tanburn, H. W. Chen, X. H. Peng, and J. F. Du, arXiv: 1706.08061

  33. S. X. Jiang, K. A. Britt, A. J. McCaskey, T. S. Humble, and S. Kais, arXiv: 1804.02733

  34. E. Boros, and P. L. Hammer, Discret Appl. Math. 123, 155 (2001).

    Article  Google Scholar 

  35. P. A. Parrilo, and B. Sturmfels, arXiv: math/0103170

  36. R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O’Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, Nature 508, 500 (2014), arXiv: 1402.4848.

    ADS  Article  Google Scholar 

  37. Z. J. Chen, Metrology of Quantum Control and Measurement in Superconducting Qubits, Dissertation for the Doctoral Degree (University of California Santa Barbara, Santa Barbara, 2018), pp. 200–201.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peng, W., Wang, B., Hu, F. et al. Factoring larger integers with fewer qubits via quantum annealing with optimized parameters. Sci. China Phys. Mech. Astron. 62, 60311 (2019). https://doi.org/10.1007/s11433-018-9307-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9307-1

Keywords

  • integer factorization
  • quantum annealing
  • QUBO
  • D-Wave