Skip to main content
Log in

Magnetism and superconductivity in Eu(Fe1−xNix)As2 (x = 0, 0.04)

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We report Eu-local-spin magnetism and Ni-doping-induced superconductivity (SC) in a 112-type ferroarsenide system Eu(Fe1−xNix)As2. The non-doped EuFeAs2 exhibits two primary magnetic transitions at ~100 and ~40 K, probably associated with a spin-density-wave (SDW) transition and an antiferromagnetic ordering in the Fe and Eu sublattices, respectively. Two additional successive transitions possibly related to Eu-spin modulations appear at 15.5 and 6.5 K. For the Ni-doped sample with x = 0.04, the SDW transition disappears, and SC emerges at Tc = 17.5 K. The Eu-spin ordering remains at around 40 K, followed by the possible reentrant magnetic modulations with enhanced spin canting. Consequently, SC coexists with a weak spontaneous magnetization below 6.2 K in Eu(Fe0.96Ni0.04)As2, which provides a complementary playground for the study of the interplay between SC and magnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008)

    Google Scholar 

  2. M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008), arXiv: 0805.4630.

    ADS  Google Scholar 

  3. F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, and M. K. Wu, Proc. Natl. Acad. Sci. 105, 14262 (2008)

    ADS  Google Scholar 

  4. X. C. Wang, Q. Q. Liu, Y. X. Lv, W. B. Gao, L. X. Yang, R. C. Yu, F. Y. Li, and C. Q. Jin, Solid State Commun. 148, 538 (2008), arXiv: 0806.4688.

    ADS  Google Scholar 

  5. X. Zhu, F. Han, G. Mu, P. Cheng, B. Shen, B. Zeng, and H. H. Wen, Phys. Rev. B 79, 220512(R) (2009), arXiv: 0904.1732.

    ADS  Google Scholar 

  6. J. Guo, S. Jin, G. Wang, S. Wang, K. Zhu, T. Zhou, M. He, and X. Chen, Phys. Rev. B 82, 180520(R) (2010), arXiv: 1012.2924.

    ADS  Google Scholar 

  7. S. Kakiya, K. Kudo, Y. Nishikubo, K. Oku, E. Nishibori, H. Sawa, T. Yamamoto, T. Nozaka, and M. Nohara, J. Phys. Soc. Jpn. 80, 093704 (2011), arXiv: 1108.0029.

    ADS  Google Scholar 

  8. N. Ni, J. M. Allred, B. C. Chan, and R. J. Cava, Proc. Natl. Acad. Sci. 108, E1019 (2011), arXiv: 1106.2111.

    ADS  Google Scholar 

  9. Y. L. Sun, H. Jiang, H. F. Zhai, J. K. Bao, W. H. Jiao, Q. Tao, C. Y. Shen, Y. W. Zeng, Z. A. Xu, and G. H. Cao, J. Am. Chem. Soc. 134, 12893 (2012)

    Google Scholar 

  10. S. Katrych, K. Rogacki, A. Pisoni, S. Bosma, S. Weyeneth, R. Gaal, N. D. Zhigadlo, J. Karpinski, and L. Forró, Phys. Rev. B 87, 180508 (2013)

    ADS  Google Scholar 

  11. N. Katayama, K. Kudo, S. Onari, T. Mizukami, K. Sugawara, Y. Sugiyama, Y. Kitahama, K. Iba, K. Fujimura, N. Nishimoto, M. Nohara, and H. Sawa, J. Phys. Soc. Jpn. 82, 123702 (2013), arXiv: 1311.1303.

    ADS  Google Scholar 

  12. H. Yakita, H. Ogino, T. Okada, A. Yamamoto, K. Kishio, T. Tohei, Y. Ikuhara, Y. Gotoh, H. Fujihisa, K. Kataoka, H. Eisaki, and J. Shimoyama, J. Am. Chem. Soc. 136, 846 (2014)

    Google Scholar 

  13. X. F. Lu, N. Z. Wang, H. Wu, Y. P. Wu, D. Zhao, X. Z. Zeng, X. G. Luo, T. Wu, W. Bao, G. H. Zhang, F. Q. Huang, Q. Z. Huang, and X. H. Chen, Nat. Mater. 14, 325 (2015)

    ADS  Google Scholar 

  14. A. Iyo, K. Kawashima, T. Kinjo, T. Nishio, S. Ishida, H. Fujihisa, Y. Gotoh, K. Kihou, H. Eisaki, and Y. Yoshida, J. Am. Chem. Soc. 138, 3410 (2016)

    Google Scholar 

  15. Z. C. Wang, C. Y. He, S. Q. Wu, Z. T. Tang, Y. Liu, A. Ablimit, C. M. Feng, and G. H. Cao, J. Am. Chem. Soc. 138, 7856 (2016)

    Google Scholar 

  16. Z. Ren, Q. Tao, S. Jiang, C. Feng, C. Wang, J. Dai, G. Cao, and Z. Xu, Phys. Rev. Lett. 102, 137002 (2009), arXiv: 0811.2390.

    ADS  Google Scholar 

  17. S. Nandi, W. T. Jin, Y. Xiao, Y. Su, S. Price, D. K. Shukla, J. Strempfer, H. S. Jeevan, P. Gegenwart, and T. Brückel, Phys. Rev. B 89, 014512 (2014), arXiv: 1401.5463.

    ADS  Google Scholar 

  18. I. S. Veshchunov, L. Y. Vinnikov, V. S. Stolyarov, N. Zhou, Z. X. Shi, X. F. Xu, S. Y. Grebenchuk, D. S. Baranov, I. A. Golovchanskiy, S. Pyon, Y. Sun, W. Jiao, G. Cao, T. Tamegai, and A. A. Golubov, JETP Lett. 105, 98 (2017), arXiv: 1703.02235.

    ADS  Google Scholar 

  19. W. H. Jiao, Q. Tao, Z. Ren, Y. Liu, and G. H. Cao, NPJ Quant. Mater. 2, 50 (2017), arXiv: 1707.08420.

    ADS  Google Scholar 

  20. S. Zapf, and M. Dressel, Rep. Prog. Phys. 80, 016501 (2017) 12 127405-8

    ADS  Google Scholar 

  21. H. Raffius, E. Mörsen, B. D. Mosel, W. Müller-Warmuth, W. Jeitschko, L. Terbüchte, and T. Vomhof, J. Phys. Chem. Solids 54, 135 (1993)

    ADS  Google Scholar 

  22. Z. Ren, Z. Zhu, S. Jiang, X. Xu, Q. Tao, C. Wang, C. Feng, G. Cao, and Z. Xu, Phys. Rev. B 78, 052501 (2008), arXiv: 0806.2591.

    ADS  Google Scholar 

  23. S. Jiang, Y. Luo, Z. Ren, Z. Zhu, C. Wang, X. Xu, Q. Tao, G. Cao, and Z. Xu, New J. Phys. 11, 025007 (2009), arXiv: 0808.0325.

    ADS  Google Scholar 

  24. H. S. Jeevan, Z. Hossain, D. Kasinathan, H. Rosner, C. Geibel, and P. Gegenwart, Phys. Rev. B 78, 092406 (2008), arXiv: 0807.2530.

    ADS  Google Scholar 

  25. S. Jiang, H. Xing, G. Xuan, Z. Ren, C. Wang, Z. Xu, and G. Cao, Phys. Rev. B 80, 184514 (2009), arXiv: 0911.0273.

    ADS  Google Scholar 

  26. X. B. Chen, Z. A. Ren, H. S. Ding, and L. H. Liu, Sci. China-Phys. Mech. Astron. 53, 1212 (2010)

    ADS  Google Scholar 

  27. W. H. Jiao, Q. Tao, J. K. Bao, Y. L. Sun, C. M. Feng, Z. A. Xu, I. Nowik, I. Felner, and G. H. Cao, EPL 95, 67007 (2011)

    ADS  Google Scholar 

  28. W. H. Jiao, H. F. Zhai, J. K. Bao, Y. K. Luo, Q. Tao, C. M. Feng, Z. A. Xu, and G. H. Cao, New J. Phys. 15, 113002 (2013)

    ADS  Google Scholar 

  29. W. H. Jiao, Y. Liu, Z. T. Tang, Y. K. Li, X. F. Xu, Z. Ren, Z. A. Xu, and G. H. Cao, Supercond. Sci. Technol. 30, 025012 (2017)

    ADS  Google Scholar 

  30. C. F. Miclea, M. Nicklas, H. S. Jeevan, D. Kasinathan, Z. Hossain, H. Rosner, P. Gegenwart, C. Geibel, and F. Steglich, Phys. Rev. B 79, 212509 (2009), arXiv: 0808.2026.

    ADS  Google Scholar 

  31. K. Kawashima, T. Kinjo, T. Nishio, S. Ishida, H. Fujihisa, Y. Gotoh, K. Kihou, H. Eisaki, Y. Yoshida, and A. Iyo, J. Phys. Soc. Jpn. 85, 064710 (2016)

    ADS  Google Scholar 

  32. Y. Liu, Y. B. Liu, Z. T. Tang, H. Jiang, Z. C. Wang, A. Ablimit, W. H. Jiao, Q. Tao, C. M. Feng, Z. A. Xu, and G. H. Cao, Phys. Rev. B 93, 214503 (2016), arXiv: 1605.04396.

    ADS  Google Scholar 

  33. Y. Liu, Y. B. Liu, Q. Chen, Z. T. Tang, W. H. Jiao, Q. Tao, Z. A. Xu, and G. H. Cao, Sci. Bull. 61, 1213 (2016)

    Google Scholar 

  34. M. A. Albedah, F. Nejadsattari, Z. M. Stadnik, Y. Liu, and G. H. Cao, Phys. Rev. B 97, 144426 (2018)

    ADS  Google Scholar 

  35. M. A. Albedah, F. Nejadsattari, Z. M. Stadnik, Y. Liu, and G. H. Cao, J. Phys.-Condens. Matter 30, 155803 (2018)

    ADS  Google Scholar 

  36. J. Yu, T. Liu, B. J. Pan, B. B. Ruan, X. C. Wang, Q. G. Mu, K. Zhao, G. F. Chen, and Z. A. Ren, Sci. Bull. 62, 218 (2017)

    Google Scholar 

  37. K. Kudo, T. Mizukami, Y. Kitahama, D. Mitsuoka, K. Iba, K. Fujimura, N. Nishimoto, Y. Hiraoka, and M. Nohara, J. Phys. Soc. Jpn. 83, 025001 (2014), arXiv: 1311.1269.

    ADS  Google Scholar 

  38. G. Cao, S. Jiang, X. Lin, C. Wang, Y. Li, Z. Ren, Q. Tao, C. Feng, J. Dai, Z. Xu, and F. C. Zhang, Phys. Rev. B 79, 174505 (2009), arXiv: 0807.4328.

    ADS  Google Scholar 

  39. L. J. Li, Y. K. Luo, Q. B. Wang, H. Chen, Z. Ren, Q. Tao, Y. K. Li, X. Lin, M. He, Z. W. Zhu, G. H. Cao, and Z. A. Xu, New J. Phys. 11, 025008 (2009), arXiv: 0809.2009.

    ADS  Google Scholar 

  40. Z. Ren, X. Lin, Q. Tao, S. Jiang, Z. Zhu, C. Wang, G. Cao, and Z. Xu, Phys. Rev. B 79, 094426 (2009), arXiv: 0810.2595.

    ADS  Google Scholar 

  41. G. Fuchs, S. L. Drechsler, N. Kozlova, M. Bartkowiak, J. E. Hamann-Borrero, G. Behr, K. Nenkov, H. H. Klauss, H. Maeter, A. Amato, H. Luetkens, A. Kwadrin, R. Khasanov, J. Freudenberger, A. Köhler, M. Knupfer, E. Arushanov, H. Rosner, B. Büchner, and L. Schultz, New J. Phys. 11, 075007 (2009), arXiv: 0902.3498.

    ADS  Google Scholar 

  42. S. Blundell, Magnetism in Condensed Matter (Oxford University Press, Oxford, (2001)

    Google Scholar 

  43. S. Zapf, H. S. Jeevan, T. Ivek, F. Pfister, F. Klingert, S. Jiang, D. Wu, P. Gegenwart, R. K. Kremer, and M. Dressel, Phys. Rev. Lett. 110, 237002 (2013), arXiv: 1305.5672.

    ADS  Google Scholar 

  44. B. Zeng, G. Mu, H. Q. Luo, and H. H. Wen, Sci. China-Phys. Mech. Astron. 53, 1221 (2010), arXiv: 1003.4907.

    ADS  Google Scholar 

  45. F. Hardy, P. Burger, T. Wolf, R. A. Fisher, P. Schweiss, P. Adelmann, R. Heid, R. Fromknecht, R. Eder, D. Ernst, H. Löhneysen, and C. Meingast, Europhys. Lett. 91, 47008 (2010), arXiv: 1007.2218.

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11474252), the National Key Research and Development Program of China (Grant No. 2016YFA0300202), and the Fundamental Research Funds for the Central Universities of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuangHan Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, Y., Jiao, W. et al. Magnetism and superconductivity in Eu(Fe1−xNix)As2 (x = 0, 0.04). Sci. China Phys. Mech. Astron. 61, 127405 (2018). https://doi.org/10.1007/s11433-018-9284-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9284-3

Keywords

Navigation