Skip to main content
Log in

Thermally activated flux flow, vortex-glass phase transition and the mixed-state Hall effect in 112-type iron pnictide superconductors

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The transport properties in the mixed state of high-quality Ca0.8La0.2Fe0.98Co0.02As2 single crystal, a newly discovered 112-type iron pnictide superconductor, are comprehensively studied by magneto-resistivity measurement. The field-dependent activation energy, U0, is derived in the framework of thermally activated flux flow (TAFF) theory, yielding a power law dependence U0~Hα with a crossover at a magnetic field around 2 T in both Hab and H//ab, which is ascribed to the different pinning mechanisms. Moreover, we have clearly observed the vortex phase transition from vortex-glass to vortex-liquid according to the vortex-glass model, and vortex phase diagrams are constructed for both Hab and H//ab. Finally, the results of mixed-state Hall effect show that no sign reversal of transverse resistivity ρxy(H) is detected, indicating that the Hall component arising from the vortex flow is also negative based on the time dependent Ginzburg-Landau (TDGL) theory. Meanwhile, the transverse resistivity ρxy(H) and the longitudinal resistivity ρxx(H) follow the relation |ρxy(H)|=xx(H)β well with an exponent β~2.0, which is in line with the results in theories or experiments previously reported on some high-Tc cuprates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).

    Google Scholar 

  2. H. S. Lee, M. Bartkowiak, J. S. Kim, and H. J. Lee, Phys. Rev. B 82, 104523 (2010).

    ADS  Google Scholar 

  3. R. Prozorov, N. Ni, M. A. Tanatar, V. G. Kogan, R. T. Gordon, C. Martin, E. C. Blomberg, P. Prommapan, J. Q. Yan, S. L. Bud’Ko, and P. C. Canfield, Phys. Rev. B 78, 224506 (2008), arXiv: 0810.1338.

    ADS  Google Scholar 

  4. S. R. Ghorbani, X. L. Wang, M. Shabazi, S. X. Dou, K. Y. Choi, and C. T. Lin, Appl. Phys. Lett. 100, 072603 (2012).

    ADS  Google Scholar 

  5. Y. Sun, S. Pyon, T. Tamegai, R. Kobayashi, T. Watashige, S. Kasahara, Y. Matsuda, and T. Shibauchi, Phys. Rev. B 92, 144509 (2015), arXiv: 1510.05753.

    ADS  Google Scholar 

  6. W. Zhou, X. Xing, W. Wu, H. Zhao, and Z. Shi, Sci. Rep. 6, 22278 (2016).

    ADS  Google Scholar 

  7. B. Shen, P. Cheng, Z. Wang, L. Fang, C. Ren, L. Shan, and H. H. Wen, Phys. Rev. B 81, 014503 (2010), arXiv: 0910.3600.

    ADS  Google Scholar 

  8. S. Salem-Sugui Jr., L. Ghivelder, A. D. Alvarenga, L. F. Cohen, K. A. Yates, K. Morrison, J. L. Pimentel Jr., H. Luo, Z. Wang, and H. H. Wen, Phys. Rev. B 82, 054513 (2010), arXiv: 1008.2880.

    ADS  Google Scholar 

  9. S. Sun, S. Wang, C. Li, and H. Lei, Supercond. Sci. Technol. 31, 015003 (2018), arXiv: 1705.08810.

    ADS  Google Scholar 

  10. X. Yi, C. Wang, Q. Tang, T. Peng, Y. Qiu, J. Xu, H. Sun, Y. Luo, and B. Yu, Supercond. Sci. Technol. 29, 105015 (2016).

    ADS  Google Scholar 

  11. L. Jiao, Y. Kohama, J. L. Zhang, H. D. Wang, B. Maiorov, F. F. Balakirev, Y. Chen, L. N. Wang, T. Shang, M. H. Fang, and H. Q. Yuan, Phys. Rev. B 85, 064513 (2012), arXiv: 1106.2283.

    ADS  Google Scholar 

  12. J. Jaroszynski, F. Hunte, L. Balicas, Y. Jo, I. Raicevic, A. Gurevich, D. C. Larbalestier, F. F. Balakirev, L. Fang, P. Cheng, Y. Jia, and H. H. Wen, Phys. Rev. B 78, 174523 (2008), arXiv: 0810.2469.

    ADS  Google Scholar 

  13. G. Prando, P. Carretta, R. de Renzi, S. Sanna, A. Palenzona, M. Putti, and M. Tropeano, Phys. Rev. B 83, 174514 (2011), arXiv: 1102.1404.

    ADS  Google Scholar 

  14. S. Salem-Sugui Jr., J. Mosqueira, A. D. Alvarenga, D. Sóñora, A. Crisan, A. M. Ionescu, S. Sundar, D. Hu, S. L. Li, and H. Q. Luo, Supercond. Sci. Technol. 30, 055003 (2017).

    ADS  Google Scholar 

  15. J. C. Lu, Y. Yu, L. Pi, and Y. H. Zhang, Chin. Phys. B 23, 127402 (2014).

    ADS  Google Scholar 

  16. M. Andersson, A. Rydh, and Ö. Rapp, Phys. Rev. B 63, 184511 (2001).

    ADS  Google Scholar 

  17. B. D. Josephson, Phys. Lett. 16, 242 (1965).

    ADS  Google Scholar 

  18. S. J. Hagen, A. W. Smith, M. Rajeswari, J. L. Peng, Z. Y. Li, R. L. Greene, S. N. Mao, X. X. Xi, S. Bhattacharya, Q. Li, and C. J. Lobb, Phys. Rev. B 47, 1064 (1993).

    ADS  Google Scholar 

  19. V. N. Narozhnyi, J. Freudenberger, V. N. Kochetkov, K. A. Nenkov, G. Fuchs, A. Handstein, and K. H. Müller, Phys. Rev. B 59, 14762 (1999).

    ADS  Google Scholar 

  20. A. V. Samoilov, Z. G. Ivanov, and L. G. Johansson, Phys. Rev. B 49, 3667 (1994).

    ADS  Google Scholar 

  21. R. C. Budhani, S. H. Liou, and Z. X. Cai, Phys. Rev. Lett. 71, 621 (1993).

    ADS  Google Scholar 

  22. S. Bhattacharya, M. J. Higgins, and T. V. Ramakrishnan, Phys. Rev. Lett. 73, 1699 (1994).

    ADS  Google Scholar 

  23. Y. Matsuda, T. Nagaoka, G. Suzuki, K. Kumagai, M. Suzuki, M. Machida, M. Sera, M. Hiroi, and N. Kobayashi, Phys. Rev. B 52, R15749 (1995).

    ADS  Google Scholar 

  24. T. Nagaoka, Y. Matsuda, H. Obara, A. Sawa, T. Terashima, I. Chong, M. Takano, and M. Suzuki, Phys. Rev. Lett. 80, 3594 (1998).

    ADS  Google Scholar 

  25. R. Jin, and H. R. Ott, Phys. Rev. B 57, 13872 (1998).

    ADS  Google Scholar 

  26. L. M. Wang, H. C. Yang, and H. E. Horng, Phys. Rev. Lett. 78, 527 (1997).

    ADS  Google Scholar 

  27. Z. Wang, Y. Z. Zhang, X. F. Lu, H. Gao, L. Shan, and H. H. Wen, Physica C 422, 41 (2005).

    ADS  Google Scholar 

  28. J. Bardeen, and M. J. Stephen, Phys. Rev. 140, A1197 (1965).

    ADS  Google Scholar 

  29. P. Nozières, and W. F. Vinen, Philos. Mag. 14, 667 (1966).

    ADS  Google Scholar 

  30. J. Luo, T. P. Orlando, J. M. Graybeal, X. D. Wu, and R. Muenchausen, Phys. Rev. Lett. 68, 690 (1992).

    ADS  Google Scholar 

  31. A. V. Samoilov, A. Legris, F. Rullier-Albenque, P. Lejay, S. Bouffard, Z. G. Ivanov, and L. G. Johansson, Phys. Rev. Lett. 74, 2351 (1995).

    ADS  Google Scholar 

  32. A. V. Samoilov, Phys. Rev. Lett. 71, 617 (1993).

    ADS  Google Scholar 

  33. L. M. Wang, U. C. Sou, H. C. Yang, L. J. Chang, C. M. Cheng, K. D. Tsuei, Y. Su, T. Wolf, and P. Adelmann, Phys. Rev. B 83, 134506 (2011).

    ADS  Google Scholar 

  34. H. Sato, T. Katase, W. N. Kang, H. Hiramatsu, T. Kamiya, and H. Hosono, Phys. Rev. B 87, 064504 (2013), arXiv: 1302.3696.

    ADS  Google Scholar 

  35. L. M. Wang, C. Y. Wang, U. C. Sou, H. C. Yang, L. J. Chang, C. Redding, Y. Song, P. Dai, and C. Zhang, J. Phys.-Condens. Matter 25, 395702 (2013).

    Google Scholar 

  36. H. Lei, R. Hu, E. S. Choi, and C. Petrovic, Phys. Rev. B 82, 134525 (2010), arXiv: 1010.0263.

    ADS  Google Scholar 

  37. N. Katayama, K. Kudo, S. Onari, T. Mizukami, K. Sugawara, Y. Sugiyama, Y. Kitahama, K. Iba, K. Fujimura, N. Nishimoto, M. Nohara, and H. Sawa, J. Phys. Soc. Jpn. 82, 123702 (2013), arXiv: 1311.1303.

    ADS  Google Scholar 

  38. X. Xing, W. Zhou, N. Zhou, F. Yuan, Y. Pan, H. Zhao, X. Xu, and Z. Shi, Supercond. Sci. Technol. 29, 055005 (2016), arXiv: 1603.05392.

    ADS  Google Scholar 

  39. X. Xing, W. Zhou, J. Wang, Z. Zhu, Y. Zhang, N. Zhou, B. Qian, X. Xu, and Z. Shi, Sci. Rep. 7, 45943 (2017).

    ADS  Google Scholar 

  40. H. Yakita, H. Ogino, T. Okada, A. Yamamoto, K. Kishio, T. Tohei, Y. Ikuhara, Y. Gotoh, H. Fujihisa, K. Kataoka, H. Eisaki, and J. Shimoyama, J. Am. Chem. Soc. 136, 846 (2014).

    Google Scholar 

  41. X. Xing, W. Zhou, B. Xu, N. Li, Y. Sun, Y. Zhang, and Z. Shi, J. Phys. Soc. Jpn. 84, 075001 (2015).

    ADS  Google Scholar 

  42. J. Deak, M. McElfresh, D. W. Face, and W. L. Holstein, Phys. Rev. B 52, R3880 (1995).

    ADS  Google Scholar 

  43. W. K. Kwok, S. Fleshler, U. Welp, V. M. Vinokur, J. Downey, G. W. Crabtree, and M. M. Miller, Phys. Rev. Lett. 69, 3370 (1992).

    ADS  Google Scholar 

  44. G. Blatter, M. V. Feigel’Man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).

    ADS  Google Scholar 

  45. T. T. M. Palstra, B. Batlogg, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. Lett. 61, 1662 (1988).

    ADS  Google Scholar 

  46. T. T. M. Palstra, B. Batlogg, R. B. van Dover, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. B 41, 6621 (1990).

    ADS  Google Scholar 

  47. W. Zhou, J. Zhuang, F. Yuan, X. Li, X. Xing, Y. Sun, and Z. Shi, Appl. Phys. Express 7, 063102 (2014), arXiv: 1405.6558.

    ADS  Google Scholar 

  48. D. Ahmad, W. J. Choi, Y. I. Seo, S. Seo, S. Lee, and Y. S. Kwon, Results Phys. 7, 16 (2017).

    ADS  Google Scholar 

  49. X. L. Wang, S. R. Ghorbani, S. I. Lee, S. X. Dou, C. T. Lin, T. H. Johansen, K. H. Müller, Z. X. Cheng, G. Peleckis, M. Shabazi, A. J. Qviller, V. V. Yurchenko, G. L. Sun, and D. L. Sun, Phys. Rev. B 82, 024525 (2010), arXiv: 1002.2095.

    ADS  Google Scholar 

  50. Y. Yeshurun, and A. P. Malozemoff, Phys. Rev. Lett. 60, 2202 (1988).

    ADS  Google Scholar 

  51. D. S. Fisher, M. P. A. Fisher, and D. A. Huse, Phys. Rev. B 43, 130 (1991).

    ADS  Google Scholar 

  52. A. Rydh, Ö. Rapp, and M. Andersson, Phys. Rev. Lett. 83, 1850 (1999).

    ADS  Google Scholar 

  53. Z. D. Wang, J. Dong, and C. S. Ting, Phys. Rev. Lett. 72, 3875 (1994).

    ADS  Google Scholar 

  54. V. M. Vinokur, V. B. Geshkenbein, M. V. Feigel’man, and G. Blatter, Phys. Rev. Lett. 71, 1242 (1993).

    ADS  Google Scholar 

  55. N. B. Kopnin, B. I. Ivlev, and V. A. Kalatsky, J. Low Temp. Phys. 90, 1 (1993).

    ADS  Google Scholar 

  56. A. T. Dorsey, Phys. Rev. B 46, 8376 (1992).

    ADS  Google Scholar 

  57. H. Fukuyama, H. Ebisawa, and T. Tsuzuki, Prog. Theor. Phys. 46, 1028 (1971).

    ADS  Google Scholar 

  58. A. G. Aronov, S. Hikami, and A. I. Larkin, Phys. Rev. B 51, 3880 (1995).

    ADS  Google Scholar 

  59. W. Zhou, F. Ke, X. Xu, R. Sankar, X. Xing, C. Q. Xu, X. F. Jiang, B. Qian, N. Zhou, Y. Zhang, M. Xu, B. Li, B. Chen, and Z. X. Shi, Phys. Rev. B 96, 184503 (2017).

    ADS  Google Scholar 

  60. A. T. Dorsey, and M. P. A. Fisher, Phys. Rev. Lett. 68, 694 (1992).

    ADS  Google Scholar 

  61. W. N. Kang, D. H. Kim, S. Y. Shim, J. H. Park, T. S. Hahn, S. S. Choi, W. C. Lee, J. D. Hettinger, K. E. Gray, and B. Glagola, Phys. Rev. Lett. 76, 2993 (1996).

    ADS  Google Scholar 

  62. W. N. Kang, S. H. Yun, J. Z. Wu, and D. H. Kim, Phys. Rev. B 55, 621 (1997).

    ADS  Google Scholar 

  63. W. N. Kang, H. J. Kim, E. M. Choi, H. J. Kim, K. H. P. Kim, and S. I. Lee, Phys. Rev. B 65, 184520 (2002).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiXiang Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, X., Li, Z., Yi, X. et al. Thermally activated flux flow, vortex-glass phase transition and the mixed-state Hall effect in 112-type iron pnictide superconductors. Sci. China Phys. Mech. Astron. 61, 127406 (2018). https://doi.org/10.1007/s11433-018-9280-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9280-6

Keywords

Navigation