Skip to main content
Log in

Finite-size scaling of correlation functions in finite systems

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We propose the finite-size scaling of correlation functions in finite systems near their critical points. At a distance r in a d-dimensional finite system of size L, the correlation function can be written as the product of |r|−(d−2+η) and a finite-size scaling function of the variables r/L and tL1/v, where t = (TTc)=Tc, η is the critical exponent of correlation function, and v is the critical exponent of correlation length. The correlation function only has a sigificant directional dependence when |r| is compariable to L. We then confirm this finite-size scaling by calculating the correlation functions of the two-dimensional Ising model and the bond percolation in two-dimensional lattices using Monte Carlo simulations. We can use the finite-size scaling of the correlation function to determine the critical point and the critical exponent η.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Privman, A. Aharony, and P. Hohenberg, Phase Transitions and Critical Phenomena (Academic, New York, 1991), p. 1.

    Google Scholar 

  2. V. Privman, and M. E. Fisher, Phys. Rev. B 30, 322 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  3. X. S. Chen, and V. Dohm, Phys. Rev. E 70, 056136 (2004).

    Article  ADS  Google Scholar 

  4. K. Binder, Phys. Rev. Lett. 47, 693 (1981).

    Article  ADS  Google Scholar 

  5. W. Selke, and L. N. Shchur, J. Phys. A-Math. Gen. 38, L739 (2005).

    Google Scholar 

  6. W. Selke, and L. N. Shchur, Phys. Rev. E 80, 042104 (2009), arXiv: 0906.0721.

    Article  ADS  Google Scholar 

  7. M. Barmatz, I. Hahn, J. A. Lipa, and R. V. Duncan, Rev. Mod. Phys. 79, 1 (2007).

    Article  ADS  Google Scholar 

  8. F. M. Gasparini, M. O. Kimball, K. P. Mooney, and M. Diaz-Avila, Rev. Mod. Phys. 80, 1009 (2008).

    Article  ADS  Google Scholar 

  9. P. Y. Lai, and K. K. Mon, Phys. Rev. Lett. 62, 2608 (1989).

    Article  ADS  Google Scholar 

  10. J. L. Jones, and A. P. Young, Phys. Rev. B 71, 174438 (2005).

    Article  ADS  Google Scholar 

  11. Y. Y. Guo, and X. S. Chen, Mod. Phys, Lett. B 24, 607 (2010).

    Article  ADS  Google Scholar 

  12. X. S. Chen, and V. Dohm, Eur. Phys. J. B 15, 283 (2000).

    Article  ADS  Google Scholar 

  13. X. T. Li, and X. S. Chen, Commun. Theor. Phys. 66, 355 (2016).

    Article  ADS  Google Scholar 

  14. U. Wolff, Phys. Rev. Lett. 62, 361 (1989).

    Article  ADS  Google Scholar 

  15. L. Onsager, Phys. Rev. 65, 117 (1944).

    Article  ADS  MathSciNet  Google Scholar 

  16. M. F. Sykes, and J. W. Essam, J. Math. Phys. 5, 1117 (1964).

    Article  ADS  Google Scholar 

  17. Z. Q. Yang, M. X. Liu, and X. S. Chen, Sci. China-Phys. Mech. Astron. 60, 020521 (2017).

    Article  ADS  Google Scholar 

  18. D. Stauffer, and A. Aharony, Introduction to Percolation Theory (CRC Press, Boca Raton, FL, 1994).

    MATH  Google Scholar 

  19. F. Y. Wu, J Stat Phys 18, 115 (1978).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoSong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Hu, G., Zhang, Y. et al. Finite-size scaling of correlation functions in finite systems. Sci. China Phys. Mech. Astron. 61, 120511 (2018). https://doi.org/10.1007/s11433-018-9266-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9266-x

Keywords

Navigation