Interpretation of the DAMPE 1.4 TeV peak according to the decaying dark matter model

Abstract

Highly accurate measurements of cosmic ray electron flux by the dark matter particle explorer (DAMPE) ranging between 25 GeV and 4.6 TeV have recently been published. A sharp peak structure was found at ~ 1.4 TeV. This unexpected peak structure can be reproduced by the annihilation/decay of a nearby dark matter (DM) halo. In this study, we adopt the decaying-DM model to interpret the ~ 1.4 TeV peak. We found that the decay products of the local DM subhalo could contribute to the DMAPE peak with mDM = 3 TeV and τ ~ 1028 s. We also obtain constraints on DM lifetime and the distance of the local DM subhalo by comparison with DAMPE data.

This is a preview of subscription content, access via your institution.

References

  1. 1

    P. A. R. Ade, et al. (Planck Collaboration), Astron. Astrophys. 594, A13 (2016), arXiv: 1502. 01589.

    Article  Google Scholar 

  2. 2

    G. Bertone, Particle Dark Matter Observations, Models and Searches (Academic, Cambridge, 2010), p. 121.

    Google Scholar 

  3. 3

    G. Bertone, D. Hooper, and J. Silk, Phys. Rep. 405, 279 (2005).

    ADS  Article  Google Scholar 

  4. 4

    M. S. Turner, and F. Wilczek, Phys. Rev. D 42, 1001 (1990).

    ADS  Article  Google Scholar 

  5. 5

    J. L. Feng, Annu. Rev. Astron. Astrophys. 48, 495 (2010), arXiv: 1003. 0904.

    ADS  Article  Google Scholar 

  6. 6

    Y. Z. Fan, B. Zhang, and J. Chang, Int. J. Mod. Phys. D 19, 2011 (2010), arXiv: 1008. 4646.

    ADS  Article  Google Scholar 

  7. 7

    M. Ackermann, et al. (Fermi–LAT Collaboration), Phys. Rev. D 82, 092003 (2010), arXiv: 1008. 5119.

    ADS  Article  Google Scholar 

  8. 8

    G. Ambrosi, et al. (DAMPE Collaboration), Nature 552, 63 (2017), arXiv: 1711. 10981.

    ADS  Article  Google Scholar 

  9. 9

    C. Yue, J. Zang, T. Dong, X. Li, Z. Zhang, S. Zimmer, W. Jiang, Y. Zhang, and D. Wei, Nucl. Instrum. Methods Phys. Res. Sect. A 856, 11 (2017), arXiv: 1703. 02821.

    ADS  Article  Google Scholar 

  10. 10

    Z. Zhang, C. Wang, J. Dong, Y. Wei, S. Wen, Y. Zhang, Z. Li, C. Feng, S. Gao, Z. T. Shen, D. Zhang, J. Zhang, Q. Wang, S. Y. Ma, D. Yang, D. Jiang, D. Chen, Y. Hu, G. Huang, X. Wang, Z. Xu, S. Liu, Q. An, and Y. Gong, Nucl. Instrum. Methods Phys. Res. Sect. A 836, 98 (2016), arXiv: 1602. 07015.

    ADS  Article  Google Scholar 

  11. 11

    F. Aharonian, et al. (H ESS Collaboration), Phys. Rev. Lett. 101, 261104 (2008), arXiv: 0811. 3894.

    ADS  Article  Google Scholar 

  12. 12

    Q. Yuan, L. Feng, P. F. Yin, Y. Z. Fan, X. J. Bi, M. Y. Cui, T.–K. Dong, Y.–Q. Guo, K. Fang, H.–B. Hu, X. Huang, S.–J. Lei, X. Li, S.–J. Lin, H. Liu, P.–X. Ma, W.–X. Peng, R. Qiao, Z.–Q. Shen, M. Su, Y.–F. Wei, Z.–L. Xu, C. Yue, J.–J. Zang, C. Zhang, X. Zhang, Y.–P. Zhang, Y.–J. Zhang, and Y.–L. Zhang, arXiv: 1711. 10989.

  13. 13

    A. Fowlie, Phys. Lett. B 780, 181 (2018), arXiv: 1712. 05089.

    ADS  Article  Google Scholar 

  14. 14

    H. B. Jin, B. Yue, X. Zhang, and X. L. Chen, arXiv: 1712. 00362.

  15. 15

    L. Zu, C. Zhang, L. Feng, Q. Yuan, and Y. Z. Fan, arXiv: 1711. 11052.

  16. 16

    Y. Z. Fan, W. C. Huang, M. Spinrath, Y. L. S. Tsai, and Q. Yuan, Phys. Lett. B 781, 83 (2018), arXiv: 1711. 10995.

    ADS  Article  Google Scholar 

  17. 17

    P. H. Gu, and X. G. He, Phys. Lett. B 778, 292 (2018), arXiv: 1711. 11000.

    ADS  Article  Google Scholar 

  18. 18

    G. H. Duan, L. Feng, F. Wang, L. Wu, J. M. Yang, and R. Zheng, J. High Energ. Phys. 2018, 107 (2018), arXiv: 1711. 11012.

    Article  Google Scholar 

  19. 19

    Y. L. Tang, L. Wu, M. Zhang, and R. Zheng, arXiv: 1711. 11058.

  20. 20

    W. Chao, and Q. Yuan, arXiv: 1711. 11182.

  21. 21

    P. H. Gu, arXiv: 1711. 11333.

  22. 22

    P. Athron, C. Balazs, A. Fowlie, and Y. Zhang, J. High Energ. Phys. 2018, 121 (2018), arXiv: 1711. 11376.

    Article  Google Scholar 

  23. 23

    J. Cao, L. Feng, X. Guo, L. Shang, F. Wang, and P. Wu, arXiv: 1711. 11452.

  24. 24

    G. H. Duan, X. G. He, L. Wu, and J. M. Yang, Eur. Phys. J. C 78, 323 (2018), arXiv: 1711. 11563.

    ADS  Article  Google Scholar 

  25. 25

    X. Liu, and Z. Liu, arXiv: 1711. 11579.

  26. 26

    X. J. Huang, Y. L. Wu, W. H. Zhang, and Y. F. Zhou, arXiv: 1712. 00005.

  27. 27

    W. Chao, H. K. Guo, H. L. Li, and J. Shu, arXiv: 1712. 00037.

  28. 28

    Y. Gao, and Y. Z. Ma, arXiv: 1712. 00370.

  29. 29

    J. S. Niu, T. Li, R. Ding, B. Zhu, H. F. Xue, and Y. Wang, Phys. Rev. D 97, 083012 (2018), arXiv: 1712. 00372.

    ADS  Article  Google Scholar 

  30. 30

    C. H. Chen, C. W. Chiang, and T. Nomura, Phys. Rev. D 97, 061302 (2018), arXiv: 1712. 00793.

    ADS  Article  Google Scholar 

  31. 31

    T. Li, N. Okada, and Q. Shafi, Phys. Lett. B 779, 130 (2018), arXiv: 1712. 00869.

    ADS  Article  Google Scholar 

  32. 32

    R. Zhu, and Y. Zhang, arXiv: 1712. 01143.

  33. 33

    P. H. Gu, arXiv: 1712. 00922.

  34. 34

    T. Nomura, and H. Okada, arXiv: 1712. 00941.

  35. 35

    K. Ghorbani, and P. H. Ghorbani, arXiv: 1712. 01239.

  36. 36

    J. Cao, L. Feng, X. Guo, L. Shang, F. Wang, P. Wu, and L. Zu, Eur. Phys. J. C 78, 198 (2018), arXiv: 1712. 01244.

    ADS  Article  Google Scholar 

  37. 37

    F. Yang, and M. Su, arXiv: 1712. 01724.

  38. 38

    R. Ding, Z. L. Han, L. Feng, and B. Zhu, arXiv: 1712. 02021.

  39. 39

    G. Liu, F. Wang, W. Wang, and J. M. Yang, Chin. Phys. C 42, 035101 (2018), arXiv: 1712. 02381.

    ADS  Article  Google Scholar 

  40. 40

    S. F. Ge, H. J. He, and Y. C. Wang, Phys. Lett. B 781, 88 (2018), arXiv: 1712. 02744.

    ADS  Article  Google Scholar 

  41. 41

    Y. Zhao, K. Fang, M. Su, and M. C. Miller, arXiv: 1712. 03210.

  42. 42

    Y. Sui, and Y. Zhang, Phys. Rev. D 97, 095002 (2018), arXiv: 1712. 03642.

    ADS  Article  Google Scholar 

  43. 43

    N. Okada, and O. Seto, arXiv: 1712. 03652.

  44. 44

    J. Cao, X. Guo, L. Shang, F. Wang, P. Wu, and L. Zu, Phys. Rev. D 97, 063016(2018), arXiv: 1712. 05351.

    ADS  Article  Google Scholar 

  45. 45

    Z. L. Han, W. Wang, and R. Ding, Eur. Phys. J. C 78, 216 (2018), arXiv: 1712. 05722.

    ADS  Article  Google Scholar 

  46. 46

    J. S. Niu, T. Li, and F. Z. Xu, arXiv: 1712. 09586.

  47. 47

    T. Nomura, H. Okada, and P. Wu, arXiv: 1801. 04729.

  48. 48

    A. W. Strong, I. V. Moskalenko, and V. S. Ptuskin, Annu. Rev. Nucl. Part. Sci. 57, 285 (2007).

    ADS  Article  Google Scholar 

  49. 49

    E. S. Seo, and V. S. Ptuskin, Astrophys. J. 431, 705 (1994).

    ADS  Article  Google Scholar 

  50. 50

    A. W. Strong, and I. V. Moskalenko, Astrophys. J. 509, 212 (1998).

    ADS  Article  Google Scholar 

  51. 51

    C. Evoli, D. Gaggero, D. Grasso, and L. Maccione, J. Cosmol. Astropart. Phys. 2008, 018 (2008), arXiv: 0807. 4730.

    Article  Google Scholar 

  52. 52

    X. Huang, Y. L. S. Tsai, and Q. Yuan, Comput. Phys. Commun. 213, 252 (2017), arXiv: 1603. 07119.

    ADS  Article  Google Scholar 

  53. 53

    M. Aguilar, et al. (AMS Collaboration), Phys. Rev. Lett. 110, 141102 (2013).

    ADS  Article  Google Scholar 

  54. 54

    L. Feng, Q. Yuan, X. Li, and Y. Z. Fan, Phys. Lett. B 720, 1 (2013), arXiv: 1206. 4758.

    ADS  Article  Google Scholar 

  55. 55

    L. Bergström, T. Bringmann, I. Cholis, D. Hooper, and C. Weniger, Phys. Rev. Lett. 111, 171101 (2013), arXiv: 1306. 3983.

    ADS  Article  Google Scholar 

  56. 56

    H. B. Jin, Y. L. Wu, and Y. F. Zhou, J. Cosmol. Astropart. Phys. 2015, 049 (2015), arXiv: 1410. 0171.

    Article  Google Scholar 

  57. 57

    Q. Yuan, S. J. Lin, K. Fang, and X. J. Bi, Phys. Rev. D 95, 083007 (2017), arXiv: 1701. 06149.

    ADS  Article  Google Scholar 

  58. 58

    L. Feng, R. Z. Yang, H. N. He, T. K. Dong, Y. Z. Fan, and J. Chang, Phys. Lett. B 728, 250 (2014), arXiv: 1303. 0530.

    ADS  Article  Google Scholar 

  59. 59

    N. Kawanaka, K. Ioka, and M. M. Nojiri, Astrophys. J. 710, 958 (2010), arXiv: 0903. 3782.

    ADS  Article  Google Scholar 

  60. 60

    P. D. Serpico, Astropart. Phys. 39–40, 2 (2012), arXiv: 1108. 4827.

  61. 61

    I. V. Moskalenko, A. W. Strong, J. F. Ormes, and M. S. Potgieter, Astrophys. J. 565, 280 (2002).

    ADS  Article  Google Scholar 

  62. 62

    A. Strong, and J. Mattox, Astron. Astrophys. 308, L21 (1996).

    ADS  Google Scholar 

  63. 63

    R. Blandford, and D. Eichler, Phys. Rep. 154, 1 (1987).

    ADS  Article  Google Scholar 

  64. 64

    D. Maurin, F. Donato, R. Taillet, and P. Salati, Astrophys. J. 555, 585 (2001).

    ADS  Article  Google Scholar 

  65. 65

    S. P. Swordy, D. Mueller, P. Meyer, J. L'Heureux, and J. M. Grunsfeld, Astrophys. J. 349, 625 (1990).

    ADS  Article  Google Scholar 

  66. 66

    J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 490, 493 (1997).

    ADS  Article  Google Scholar 

  67. 67

    J. Einasto, arXiv: 0901. 0632.

  68. 68

    L. Bergstrom, P. Ullio, and J. Buckley, Astropart. Phys. 9, 44 (1997).

    Google Scholar 

  69. 69

    B. Moore, S. Ghigna, F. Governato, G. Lake, T. Quinn, J. Stadel, and P. Tozzi, Astrophys. J. 524, L19 (1999).

    ADS  Article  Google Scholar 

  70. 70

    A. M. Atoyan, F. A. Aharonian, and H. J. Volk, Phys. Rev. D 52, 3265 (1995).

    ADS  Article  Google Scholar 

  71. 71

    V. Springel, J. Wang, M. Vogelsberger, A. Ludlow, A. Jenkins, A. Helmi, J. F. Navarro, C. S. Frenk, and S. D. M. White, Mon. Not. R. Astron. Soc. 391, 1685 (2008), arXiv: 0809. 0898.

    ADS  Article  Google Scholar 

  72. 72

    M. Aguilar, et al. (AMS Collaboration), Phys. Rev. Lett. 113, 221102 (2014).

    ADS  Article  Google Scholar 

  73. 73

    T. Kamae, N. Karlsson, T. Mizuno, T. Abe, and T. Koi, Astrophys. J. 647, 692 (2006).

    ADS  Article  Google Scholar 

  74. 74

    L. Bergström, T. Bringmann, M. Eriksson, and M. Gustafsson, Phys. Rev. Lett. 94, 131301 (2005).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lei Feng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pan, X., Zhang, C. & Feng, L. Interpretation of the DAMPE 1.4 TeV peak according to the decaying dark matter model. Sci. China Phys. Mech. Astron. 61, 101006 (2018). https://doi.org/10.1007/s11433-018-9257-3

Download citation

Keywords

  • dark matter
  • cosmic ray
  • DAMPE