Abstract
Highly accurate measurements of cosmic ray electron flux by the dark matter particle explorer (DAMPE) ranging between 25 GeV and 4.6 TeV have recently been published. A sharp peak structure was found at ~ 1.4 TeV. This unexpected peak structure can be reproduced by the annihilation/decay of a nearby dark matter (DM) halo. In this study, we adopt the decaying-DM model to interpret the ~ 1.4 TeV peak. We found that the decay products of the local DM subhalo could contribute to the DMAPE peak with mDM = 3 TeV and τ ~ 1028 s. We also obtain constraints on DM lifetime and the distance of the local DM subhalo by comparison with DAMPE data.
This is a preview of subscription content, access via your institution.
References
- 1
P. A. R. Ade, et al. (Planck Collaboration), Astron. Astrophys. 594, A13 (2016), arXiv: 1502. 01589.
- 2
G. Bertone, Particle Dark Matter Observations, Models and Searches (Academic, Cambridge, 2010), p. 121.
- 3
G. Bertone, D. Hooper, and J. Silk, Phys. Rep. 405, 279 (2005).
- 4
M. S. Turner, and F. Wilczek, Phys. Rev. D 42, 1001 (1990).
- 5
J. L. Feng, Annu. Rev. Astron. Astrophys. 48, 495 (2010), arXiv: 1003. 0904.
- 6
Y. Z. Fan, B. Zhang, and J. Chang, Int. J. Mod. Phys. D 19, 2011 (2010), arXiv: 1008. 4646.
- 7
M. Ackermann, et al. (Fermi–LAT Collaboration), Phys. Rev. D 82, 092003 (2010), arXiv: 1008. 5119.
- 8
G. Ambrosi, et al. (DAMPE Collaboration), Nature 552, 63 (2017), arXiv: 1711. 10981.
- 9
C. Yue, J. Zang, T. Dong, X. Li, Z. Zhang, S. Zimmer, W. Jiang, Y. Zhang, and D. Wei, Nucl. Instrum. Methods Phys. Res. Sect. A 856, 11 (2017), arXiv: 1703. 02821.
- 10
Z. Zhang, C. Wang, J. Dong, Y. Wei, S. Wen, Y. Zhang, Z. Li, C. Feng, S. Gao, Z. T. Shen, D. Zhang, J. Zhang, Q. Wang, S. Y. Ma, D. Yang, D. Jiang, D. Chen, Y. Hu, G. Huang, X. Wang, Z. Xu, S. Liu, Q. An, and Y. Gong, Nucl. Instrum. Methods Phys. Res. Sect. A 836, 98 (2016), arXiv: 1602. 07015.
- 11
F. Aharonian, et al. (H ESS Collaboration), Phys. Rev. Lett. 101, 261104 (2008), arXiv: 0811. 3894.
- 12
Q. Yuan, L. Feng, P. F. Yin, Y. Z. Fan, X. J. Bi, M. Y. Cui, T.–K. Dong, Y.–Q. Guo, K. Fang, H.–B. Hu, X. Huang, S.–J. Lei, X. Li, S.–J. Lin, H. Liu, P.–X. Ma, W.–X. Peng, R. Qiao, Z.–Q. Shen, M. Su, Y.–F. Wei, Z.–L. Xu, C. Yue, J.–J. Zang, C. Zhang, X. Zhang, Y.–P. Zhang, Y.–J. Zhang, and Y.–L. Zhang, arXiv: 1711. 10989.
- 13
A. Fowlie, Phys. Lett. B 780, 181 (2018), arXiv: 1712. 05089.
- 14
H. B. Jin, B. Yue, X. Zhang, and X. L. Chen, arXiv: 1712. 00362.
- 15
L. Zu, C. Zhang, L. Feng, Q. Yuan, and Y. Z. Fan, arXiv: 1711. 11052.
- 16
Y. Z. Fan, W. C. Huang, M. Spinrath, Y. L. S. Tsai, and Q. Yuan, Phys. Lett. B 781, 83 (2018), arXiv: 1711. 10995.
- 17
P. H. Gu, and X. G. He, Phys. Lett. B 778, 292 (2018), arXiv: 1711. 11000.
- 18
G. H. Duan, L. Feng, F. Wang, L. Wu, J. M. Yang, and R. Zheng, J. High Energ. Phys. 2018, 107 (2018), arXiv: 1711. 11012.
- 19
Y. L. Tang, L. Wu, M. Zhang, and R. Zheng, arXiv: 1711. 11058.
- 20
W. Chao, and Q. Yuan, arXiv: 1711. 11182.
- 21
P. H. Gu, arXiv: 1711. 11333.
- 22
P. Athron, C. Balazs, A. Fowlie, and Y. Zhang, J. High Energ. Phys. 2018, 121 (2018), arXiv: 1711. 11376.
- 23
J. Cao, L. Feng, X. Guo, L. Shang, F. Wang, and P. Wu, arXiv: 1711. 11452.
- 24
G. H. Duan, X. G. He, L. Wu, and J. M. Yang, Eur. Phys. J. C 78, 323 (2018), arXiv: 1711. 11563.
- 25
X. Liu, and Z. Liu, arXiv: 1711. 11579.
- 26
X. J. Huang, Y. L. Wu, W. H. Zhang, and Y. F. Zhou, arXiv: 1712. 00005.
- 27
W. Chao, H. K. Guo, H. L. Li, and J. Shu, arXiv: 1712. 00037.
- 28
Y. Gao, and Y. Z. Ma, arXiv: 1712. 00370.
- 29
J. S. Niu, T. Li, R. Ding, B. Zhu, H. F. Xue, and Y. Wang, Phys. Rev. D 97, 083012 (2018), arXiv: 1712. 00372.
- 30
C. H. Chen, C. W. Chiang, and T. Nomura, Phys. Rev. D 97, 061302 (2018), arXiv: 1712. 00793.
- 31
T. Li, N. Okada, and Q. Shafi, Phys. Lett. B 779, 130 (2018), arXiv: 1712. 00869.
- 32
R. Zhu, and Y. Zhang, arXiv: 1712. 01143.
- 33
P. H. Gu, arXiv: 1712. 00922.
- 34
T. Nomura, and H. Okada, arXiv: 1712. 00941.
- 35
K. Ghorbani, and P. H. Ghorbani, arXiv: 1712. 01239.
- 36
J. Cao, L. Feng, X. Guo, L. Shang, F. Wang, P. Wu, and L. Zu, Eur. Phys. J. C 78, 198 (2018), arXiv: 1712. 01244.
- 37
F. Yang, and M. Su, arXiv: 1712. 01724.
- 38
R. Ding, Z. L. Han, L. Feng, and B. Zhu, arXiv: 1712. 02021.
- 39
G. Liu, F. Wang, W. Wang, and J. M. Yang, Chin. Phys. C 42, 035101 (2018), arXiv: 1712. 02381.
- 40
S. F. Ge, H. J. He, and Y. C. Wang, Phys. Lett. B 781, 88 (2018), arXiv: 1712. 02744.
- 41
Y. Zhao, K. Fang, M. Su, and M. C. Miller, arXiv: 1712. 03210.
- 42
Y. Sui, and Y. Zhang, Phys. Rev. D 97, 095002 (2018), arXiv: 1712. 03642.
- 43
N. Okada, and O. Seto, arXiv: 1712. 03652.
- 44
J. Cao, X. Guo, L. Shang, F. Wang, P. Wu, and L. Zu, Phys. Rev. D 97, 063016(2018), arXiv: 1712. 05351.
- 45
Z. L. Han, W. Wang, and R. Ding, Eur. Phys. J. C 78, 216 (2018), arXiv: 1712. 05722.
- 46
J. S. Niu, T. Li, and F. Z. Xu, arXiv: 1712. 09586.
- 47
T. Nomura, H. Okada, and P. Wu, arXiv: 1801. 04729.
- 48
A. W. Strong, I. V. Moskalenko, and V. S. Ptuskin, Annu. Rev. Nucl. Part. Sci. 57, 285 (2007).
- 49
E. S. Seo, and V. S. Ptuskin, Astrophys. J. 431, 705 (1994).
- 50
A. W. Strong, and I. V. Moskalenko, Astrophys. J. 509, 212 (1998).
- 51
C. Evoli, D. Gaggero, D. Grasso, and L. Maccione, J. Cosmol. Astropart. Phys. 2008, 018 (2008), arXiv: 0807. 4730.
- 52
X. Huang, Y. L. S. Tsai, and Q. Yuan, Comput. Phys. Commun. 213, 252 (2017), arXiv: 1603. 07119.
- 53
M. Aguilar, et al. (AMS Collaboration), Phys. Rev. Lett. 110, 141102 (2013).
- 54
L. Feng, Q. Yuan, X. Li, and Y. Z. Fan, Phys. Lett. B 720, 1 (2013), arXiv: 1206. 4758.
- 55
L. Bergström, T. Bringmann, I. Cholis, D. Hooper, and C. Weniger, Phys. Rev. Lett. 111, 171101 (2013), arXiv: 1306. 3983.
- 56
H. B. Jin, Y. L. Wu, and Y. F. Zhou, J. Cosmol. Astropart. Phys. 2015, 049 (2015), arXiv: 1410. 0171.
- 57
Q. Yuan, S. J. Lin, K. Fang, and X. J. Bi, Phys. Rev. D 95, 083007 (2017), arXiv: 1701. 06149.
- 58
L. Feng, R. Z. Yang, H. N. He, T. K. Dong, Y. Z. Fan, and J. Chang, Phys. Lett. B 728, 250 (2014), arXiv: 1303. 0530.
- 59
N. Kawanaka, K. Ioka, and M. M. Nojiri, Astrophys. J. 710, 958 (2010), arXiv: 0903. 3782.
- 60
P. D. Serpico, Astropart. Phys. 39–40, 2 (2012), arXiv: 1108. 4827.
- 61
I. V. Moskalenko, A. W. Strong, J. F. Ormes, and M. S. Potgieter, Astrophys. J. 565, 280 (2002).
- 62
A. Strong, and J. Mattox, Astron. Astrophys. 308, L21 (1996).
- 63
R. Blandford, and D. Eichler, Phys. Rep. 154, 1 (1987).
- 64
D. Maurin, F. Donato, R. Taillet, and P. Salati, Astrophys. J. 555, 585 (2001).
- 65
S. P. Swordy, D. Mueller, P. Meyer, J. L'Heureux, and J. M. Grunsfeld, Astrophys. J. 349, 625 (1990).
- 66
J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 490, 493 (1997).
- 67
J. Einasto, arXiv: 0901. 0632.
- 68
L. Bergstrom, P. Ullio, and J. Buckley, Astropart. Phys. 9, 44 (1997).
- 69
B. Moore, S. Ghigna, F. Governato, G. Lake, T. Quinn, J. Stadel, and P. Tozzi, Astrophys. J. 524, L19 (1999).
- 70
A. M. Atoyan, F. A. Aharonian, and H. J. Volk, Phys. Rev. D 52, 3265 (1995).
- 71
V. Springel, J. Wang, M. Vogelsberger, A. Ludlow, A. Jenkins, A. Helmi, J. F. Navarro, C. S. Frenk, and S. D. M. White, Mon. Not. R. Astron. Soc. 391, 1685 (2008), arXiv: 0809. 0898.
- 72
M. Aguilar, et al. (AMS Collaboration), Phys. Rev. Lett. 113, 221102 (2014).
- 73
T. Kamae, N. Karlsson, T. Mizuno, T. Abe, and T. Koi, Astrophys. J. 647, 692 (2006).
- 74
L. Bergström, T. Bringmann, M. Eriksson, and M. Gustafsson, Phys. Rev. Lett. 94, 131301 (2005).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pan, X., Zhang, C. & Feng, L. Interpretation of the DAMPE 1.4 TeV peak according to the decaying dark matter model. Sci. China Phys. Mech. Astron. 61, 101006 (2018). https://doi.org/10.1007/s11433-018-9257-3
Received:
Accepted:
Published:
Keywords
- dark matter
- cosmic ray
- DAMPE