Skip to main content
Log in

Analysis of total reaction cross sections for deuterons on 1p-shell-nuclei

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

This study aims to analyze the differential cross sections (DCSs) of elastic scattering and total reaction cross sections (TRCSs) of the loosely-bound deuteron projectile impinging on 1p-shell nuclei, such as 9Be, 12C, and 16O, at incident energies ranging between 10.6 and 171 MeV using the continuum discretized coupled channel (CDCC) method. By fitting the experimental data for the DCSs and TRCSs, energy-dependent renormalization factors for the real and imaginary parts of the nucleon-nucleus optical-model potentials deduced from the studies proposed by Koning and Delaroche (KD02) and by Watson, Singh, and Segel (WSS), are obtained. It is found that with the WSS potential, which was obtained specifically for 1 p-shell nuclei, the CDCC calculations can simultaneously reproduce both the DCSs and the TRCSs. The results show that it is important to choose appropriate optical potentials to describe deuteron-induced reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. M. Perey, and F. G. Perey, Phys. Rev. 132, 755 (1963).

    Article  ADS  Google Scholar 

  2. Y. Zhang, D. Y. Pang, and J. L. Lou, Phys. Rev. C 94, 014619 (2016), arXiv: 1606.01507.

    Article  ADS  Google Scholar 

  3. D. Y. Pang, Y. L. Ye, and F. R. Xu, J. Phys. G-Nucl. Part. Phys. 39, 095101 (2012).

    Article  ADS  Google Scholar 

  4. W. W. Daehnick, J. D. Childs, and Z. Vrcelj, Phys. Rev. C 21, 2253 (1980).

    Article  ADS  Google Scholar 

  5. H. An, and C. Cai, Phys. Rev. C 73, 054605 (2006).

    Article  ADS  Google Scholar 

  6. Y. Han, Y. Shi, and Q. Shen, Phys. Rev. C 74, 044615 (2006).

    Article  ADS  Google Scholar 

  7. D. Y. Pang, Y. L. Ye, and F. R. Xu, Phys. Rev. C 83, 064619 (2011).

    Article  ADS  Google Scholar 

  8. A. Auce, R. F. Carlson, A. J. Cox, A. Ingemarsson, R. Johansson, P. U. Renberg, O. Sundberg, and G. Tibell, Phys. Rev. C 53, 2919 (1996).

    Article  ADS  Google Scholar 

  9. S. Mayo, W. Schimmerling, M. J. Sametband, and R. M. Eisberg, Nucl. Phys. 62, 393 (1965).

    Article  Google Scholar 

  10. M. Kamimura, M. Yahiro, Y. Iseri, Y. Sakuragi, H. Kameyama, and M. Kawai, Prog. Theor. Phys. Suppl. 89, 1 (1986).

    Article  ADS  Google Scholar 

  11. J. Chen, J. L. Lou, D. Y. Pang, and Y. L. Ye, Sci. China-Phys. Mech. Astron. 59, 632003 (2016).

    Article  Google Scholar 

  12. J. Chen, J. L. Lou, Y. L. Ye, Z. H. Li, Y. C. Ge, Q. T. Li, J. Li, W. Jiang, Y. L. Sun, H. L. Zang, N. Aoi, E. Ideguchi, H. J. Ong, Y. Ayyad, K. Hatanaka, D. T. Tran, T. Yamamoto, M. Tanaka, T. Suzuki, N. T. Tho, J. Rangel, A. M. Moro, D. Y. Pang, J. Lee, J. Wu, H. N. Liu, and C. Wen, Phys. Rev. C 93, 034623 (2016).

    Article  ADS  Google Scholar 

  13. J. Chen, J. L. Lou, Y. L. Ye, J. Rangel, A. M. Moro, D. Y. Pang, Z. H. Li, Y. C. Ge, Q. T. Li, J. Li, W. Jiang, Y. L. Sun, H. L. Zang, Y. Zhang, N. Aoi, E. Ideguchi, H. J. Ong, J. Lee, J. Wu, H. N. Liu, C. Wen, Y. Ayyad, K. Hatanaka, T. D. Tran, T. Yamamoto, M. Tanaka, T. Suzuki, and T. T. Nguyen, Phys. Rev. C 94, 064620 (2016).

    Article  ADS  Google Scholar 

  14. G. R. Kelly, N. J. Davis, R. P. Ward, B. R. Fulton, G. Tungate, N. Keeley, K. Rusek, E. E. Bartosz, P. D. Cathers, D. D. Caussyn, T. L. Drummer, and K. W. Kemper, Phys. Rev. C 63, 024601 (2000).

    Article  ADS  Google Scholar 

  15. J. Lei, and A. M. Moro, Phys. Rev. C 92, 044616 (2015), arXiv: 1510.02602.

    Article  ADS  Google Scholar 

  16. J. Lei, and A. M. Moro, Phys. Rev. C 95, 044605 (2017), arXiv: 1701.00547.

    Article  ADS  Google Scholar 

  17. A. M. Moro, K. Rusek, J. M. Arias, J. Gómez-Camacho, and M. Rodr´ıguez-Gallardo, Phys. Rev. C 75, 064607 (2007).

    Article  ADS  Google Scholar 

  18. I. J. Thompson, Comput. Phys. Rep. 7, 167 (1988).

    Article  ADS  Google Scholar 

  19. N. Austern, Y. Iseri, M. Kamimura, M. Kawai, G. Rawitscher, and M. Yahiro, Phys. Rep. 154, 125 (1987).

    Article  ADS  Google Scholar 

  20. B. A. Watson, P. P. Singh, and R. E. Segel, Phys. Rev. 182, 977 (1969).

    Article  ADS  Google Scholar 

  21. A. J. Koning, and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003).

    Article  ADS  Google Scholar 

  22. C. M. Chen, Atom. Ener. Sci. Tech. 17, 300 (1983).

    Google Scholar 

  23. W. Fitz, R. Jahr, and R. Santo, Nucl. Phys. A 101, 449 (1967).

    Article  ADS  Google Scholar 

  24. A. A. Cowley, G. Heymann, R. L. Keizer, and M. J. Scott, Nucl. Phys. 86, 363 (1966).

    Article  Google Scholar 

  25. R. G. Summers-Gill, Phys. Rev. 109, 1591 (1958).

    Article  ADS  Google Scholar 

  26. R. J. Slobodrian, Nucl. Phys. 32, 684 (1962).

    Article  Google Scholar 

  27. F. Baldeweg, V. Bredel, H. Guratzsch, R. Klabes, B. Kühn, and G. Stiller, Nucl. Phys. 84, 305 (1966).

    Article  Google Scholar 

  28. E. Newman, L. C. Becker, B. M. Preedom, and J. C. Hiebert, Nucl. Phys. A 100, 225 (1967).

    Article  ADS  Google Scholar 

  29. F. Hinterberger, G. Mairle, U. Schmidt-Rohr, G. J. Wagner, and P. Turek, Nucl. Phys. A 111, 265 (1968).

    Article  ADS  Google Scholar 

  30. O. Aspelund, G. Hrehuss, A. Kiss, K. T. Knöpfle, C. Mayer-Böricke, M. Rogge, U. Schwinn, Z. Seres, and P. Turek, Nucl. Phys. A 253, 263 (1975).

    Article  ADS  Google Scholar 

  31. G. Duhamel, L. Marcus, H. Langevin-Joliot, J. P. Didelez, P. Narboni, and C. Stephan, Nucl. Phys. A 174, 485 (1971).

    Article  ADS  Google Scholar 

  32. A. C. Betker, C. A. Gagliardi, D. R. Semon, R. E. Tribble, H. M. Xu, and A. F. Zaruba, Phys. Rev. C 48, 2085 (1993).

    Article  ADS  Google Scholar 

  33. C. Bäumer, R. Bassini, A. M. van den Berg, D. De Frenne, D. Frekers, M. Hagemann, V. M. Hannen, M. N. Harakeh, J. Heyse, M. A. de Huu, E. Jacobs, M. Mielke, S. Rakers, R. Schmidt, H. Sohlbach, and H. J. Wörtche, Phys. Rev. C 63, 037601 (2001).

    Article  ADS  Google Scholar 

  34. K. W. Corrigan, R. M. Prior, S. E. Darden, and B. A. Robson, Nucl. Phys. A 188, 164 (1972).

    Article  ADS  Google Scholar 

  35. A. Korff, P. Haefner, C. Bäumer, A. M. van den Berg, N. Blasi, B. Davids, D. De Frenne, R. de Leo, D. Frekers, E. W. Grewe, M. N. Harakeh, F. Hofmann, M. Hunyadi, E. Jacobs, B. C. Junk, A. Negret, P. von Neumann-Cosel, L. Popescu, S. Rakers, A. Richter, and H. J. Wörtche, Phys. Rev. C 70, 067601 (2004).

    Article  ADS  Google Scholar 

  36. W. Jiang, Y. L. Ye, Z. H. Li, C. J. Lin, Q. T. Li, Y. C. Ge, J. L. Lou, D. X. Jiang, J. Li, Z. Y. Tian, J. Feng, B. Yang, Z. H. Yang, J. Chen, H. L. Zang, Q. Liu, P. J. Li, Z. Q. Chen, Y. Zhang, Y. Liu, X. H. Sun, J. Ma, H. M. Jia, X. X. Xu, L. Yang, N. R. Ma, and L. J. Sun, Sci. China-Phys. Mech. Astron. 60, 062011 (2017).

    Article  ADS  Google Scholar 

  37. Z. H. Yang, Y. L. Ye, Z. H. Li, J. L. Lou, J. S. Wang, D. X. Jiang, Y. C. Ge, Q. T. Li, H. Hua, X. Q. Li, F. R. Xu, J. C. Pei, R. Qiao, H. B. You, H. Wang, Z. Y. Tian, K. A. Li, Y. L. Sun, H. N. Liu, J. Chen, J. Wu, J. Li, W. Jiang, C. Wen, B. Yang, Y. Y. Yang, P. Ma, J. B. Ma, S. L. Jin, J. L. Han, and J. Lee, Phys. Rev. Lett. 112, 162501 (2014).

    Article  ADS  Google Scholar 

  38. Z. H. Yang, Y. L. Ye, Z. H. Li, J. L. Lou, F. R. Xu, J. C. Pei, Z. Y. Tian, K. A. Li, Y. L. Sun, J. Chen, J. Li, W. Jiang, B. Yang, S. D. Chen, Q. Liu, H. L. Zang, J. Feng, and Z. W. Yin, Sci. China-Phys. Mech. Astron. 57, 1613 (2014).

    Article  ADS  Google Scholar 

  39. Z. H. Yang, Y. L. Ye, Z. H. Li, J. L. Lou, J. S. Wang, D. X. Jiang, Y. C. Ge, Q. T. Li, H. Hua, X. Q. Li, F. R. Xu, J. C. Pei, R. Qiao, H. B. You, H. Wang, Z. Y. Tian, K. A. Li, Y. L. Sun, H. N. Liu, J. Chen, J. Wu, J. Li, W. Jiang, C. Wen, B. Yang, Y. Liu, Y. Y. Yang, P. Ma, J. B. Ma, S. L. Jin, J. L. Han, and J. Lee, Phys. Rev. C 91, 024304 (2015).

    Article  ADS  Google Scholar 

  40. V. V. Parkar, V. Jha, S. K. Pandit, S. Santra, and S. Kailas, Phys. Rev. C 87, 034602 (2013), arXiv: 1302.4581.

    Article  ADS  Google Scholar 

  41. P. Descouvemont, Phys. Lett. B 772, 1 (2017), arXiv: 1706.06298.

    Article  ADS  Google Scholar 

  42. T. J. Gooding, Nucl. Phys. 12, 241 (1959).

    Article  Google Scholar 

  43. X. F. Zhang, and D. Y. Pang, Chin. Phys. Lett. 31, 052401 (2014).

    Article  ADS  Google Scholar 

  44. D. Y. Pang, W. M. Dean, and A. M. Mukhamedzhanov, Phys. Rev. C 91, 024611 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to JianLing Lou or DanYang Pang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhang, Y., Lou, J. et al. Analysis of total reaction cross sections for deuterons on 1p-shell-nuclei. Sci. China Phys. Mech. Astron. 61, 112011 (2018). https://doi.org/10.1007/s11433-018-9250-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9250-0

Keywords

Navigation